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Abstract

This paper is concerned with multiobjective programming problem with inequality constraints.
A generalized Abadie’s constraint qualification for second-order tangent sets is used, and based
on the later we give second-order necessary and sufficient conditions for efficiency.
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1 Introduction

In multiobjective programming problem, the first-order necessary and / or sufficient
condition for efficiency have been studied extensively in the literature [5, 6, 8, 9]. But
little work concerns second-order necessary and sufficient conditions for a feasible so-
lution to be an efficient solution.

In this paper, we consider the multiobjective programming problems with in-
equality constraints. A generalized Abadie’s constraint qualification for second-order
tangent sets is used, and based on the later we shall give second-order necessary and
sufficient conditions for efficiency.

This paper is organized as follow. In section 1, we shall formulate a multiob-
jective programming problem with inequality constraints, give some definitions and
basic results, which are used throughout the paper. In section 3, we shall define the
second-order tangent sets, and use the generalized Abadie’s constraint qualification
to derive second-order necessary conditions for a feasible solution to be efficient to the
multiobjective programming problems. In section 4, we shall give sufficient conditions
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for efficiency.

2 Preliminaries

Consider the following multiobjective programming problem

P) minimize (fi(2), ..., fi(z))
s.t gj(z) <0,j=1,..m
where f; (i € L ={1,...,l}) and g; (j € M = {1,...,m}) are twice differentiable on
IR™. Before describing the concept of an efficient solution, we describe our notations.
For any vector y, we denote the Jacobian (resp. the Hessian) of f and g at z €R™ by

Vf(z) and Vg(z) (resp. V*f(2)(y,y) and V?g(z)(y,y)) and
A={z e R"|gj(z) <0j=1,..,m}

We denote,
f(z) < f(x) implying fi(z) < fi(®), i=1,...1,
f(z) < f(z) implying fi(z) < fi(z), and f(z) # f(2),
( )< f( ) implying fz(w) < fl(j)a t=1, 7l
and for [ = 2,

N fi(z) < f1(Z)
f@) g, f(@) implying { o f1(z) = f1(z) and fo(x) < fo(7)

N . filz) < f1(T)
o) < 10) wmotiing { B9 EPG ) <

the subscription lez is an abbreviation for lexicographic order.

Definition 2.1: A point T € A is called an efficient solution to Problem (P), if there is
no z € A such that f(z) < f(z).

Let Z € A be any feasible solution to Problem (P), and let E be the subset of
indices defined by

E={je{1,2..m} g =0} (1)
Definition 2.2: The tangent cone to A at & € A is the set defined by
Ty(A,z)={ye R"|32" € A, I, — 0" such that 2" =T +t,y +o(tn)}  (2)
llo(t)Il
2

Where o(t,,) is a vector satisfying — 0F.

Definition 2.3: The linearizing cone to A at Z € A is the set defined by
Ky ={ye R"|Vyg;(Z)y<0,j € E} (3)
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3 Second-Order Necessary Conditions

Following Kawasaki [4], we define two kinds of second-order approximation sets to the
feasible region. They can be considered as extensions of T7 (A, Z) and K respectively.

Definition 3.1: The second-order tangent set to A at & € A is the set defined by
T2(A, %) = {(y,2) € R*™|32™ € A, I, — 07 such that
1
" =T+ tyy + §tiz +o(t2)}
loll o+

t

Where o(t2) is a vector satisfying

Definition 3.2: The second-order linearizing set to A at Z is the set defined by
Ly = {(y,2) € R* | (Vg;(2)y, Vg;(@)z + V2g;(2)(y,9))" <

The y-sections of Ly and T>(A,T) will be denoted by La(y) and T>(A, Z)(y), re-
spectively. That is,

Ly(y) ={z € R" | (y,2) € L} Ir(A,7)(y) = {z € BR" | (y,2) € Tx(4,2)}

0,007, je€E,}

lex

Lemma 3.1: [4] Let Z be any feasible solution to problem (P). Then we have,
T>(A,z) C Ly

Second-order constraint qualification: A is said to satisfy the second-order
Abadie’s constraint qualification at Z € A if

Ly C Th(A, %) (4)

we denote simply (4) by second-order (ACQ).

Incidently, a first-order sufficient conditions for efficiency is that the following
system has no zero solution y

0. (5)

and the condition of Kuhn-Tucker type for efficiency is equivalent [8] to the inconsis-
tency of the following system:

Vf(@)y <0, 6
Vgr()y 0. (©)
The gap between (5) and (6) is caused by the following directions:
Vi(@)y<0
Vfi(Z)y =0, at least one i (7)
Voe(@)y <0
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A direction y which satisfies (7) is called a critical direction.

For the sake of simplicity, we will use the following notations:

Fi(y,z) = (Vfi(@)y, Vfi(2)z + V> f:(2) (y, )7,
Gily,z) = (Vg;(@)y, Vg;(@)z + V2g;(2)(y,9))".

As an essentiel tool for the the proof of the second-order necessary conditions for
efficiency we need the following lemma.

Lemma 3.2: Let Z € A be an efficient solution to problem (P). Then there is no
(y,Z) € T2(A7f) with F(y,Z) <iez 0.

Where F(ya Z) <iez 0 implying Fi(ya Z) <lew (an)Ta Vi.
Proof. Let T be an efficient solution to problem (P). We fix an arbitrary (y,z) €

T»(A,Z) and, we assume that F;(y,z) <zer (0,0)7, Vi. Then, there exist 2" € A and
t, — 01 such that

" =T +tpy + %tiz +o(t2).
By Taylor’s expansion, for each i we have
Fila™) = Fi@) + 1V @)y + 5V F(E)z + V() (,) + o) ®)
o if Vf;(Z)y <0, from (8) we have:
fi(z") = fi(@) + ta(V fi(T)y + 07')  with  lim 67" =0

Hence, there exists N; such that [0}'| < =V f;(Z)y for n > N;.

o if Vf(Z)y = 0, hence Vf(Z)z + V2f(Z)(y,y) < 0 and from (8) we have:

1
File") = Fi(2) + LE(VA@7 + VA@0) +57)  with lim 67 =0
Hence, there exists M; such that |6]'| < —(V fi(Z)z + V?fi(2)(y,y)) for n > M;.
Finaly,

if Vfi(z)y < 0 we take K; = N;, ¢; = V fi(Z)y and ~ = 67
if Vfi(z)y = 0 we take K; = M, ¢; = Vfi(%)z + V> fi(%)(y,y)) and 7} = 67".

Hence,

fi(z") = fi(®) + rnlqi +i') with nli_{%oﬁ =0.
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Where r,, = t,, if Vf;(Z)y < 0 and r, = 1¢2 if V f;(z)y = 0.
Let K = max, K;, then f(z™) < f(Z) for n > K. Which is a contradiction. O

Now, we are in a position to state the primal form of our second-order necessary
conditions.

Theorem 3.1: Let Z be an efficient solution to problem (P). Assume that the second-
order (ACQ) holds at Z € A. Then, the following system has no solution (y, 2):

Fl(yaz) <lez 0, Vi 0
Gjly,2) <, 0, Vji€E. (9)

Proof. Let (y,z) be any element of T5(A, ), then, there exist z"* € A and ¢, — 0T
such that

" =T +tyy + %tiz +o(t2)
by Taylor’s expansion,
f(@") = f(2) + taV(T)y + %ti(vf(f)z + V2 f(2)(y, ) + o(t})
Which implies, (Vf(Z)y, Vf(2)z + V2 f(2)(y,y)) € T2(f(4), f(Z))-
Since Z is an efficient solution to Problem (P) and by lemma 3.2,
F(y,2) £iea 0,
where F(y, z) <jez 0 implying F;(y,2) <tez 0, Vi.
By assymption, we have
T5(A,z) = Ly
Hence, the following system has no solution (y, 2):

Fi(y,2) <iex 0, V1,
Gj(y,2) Sien 0,Vj € E.

In the following, for simplicity, we will denote (9) by
F(y,Z) <lex 07 GE(y)Z) élew 0.

It may be noted that theorem 3.2 contains the first-order optimality conditions
for efficiency [6, 8, 9]. In fact, by taking y = 0, they are embedded in (9).
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Consider the following multiobjective programming problem :

minimize (fi(z1,z2), f2(£61,562)) T1,T9)

= (
s.t g1(z1,22) = —2 — 15, <0

Then (Z1,%2)7 = (0,0)7 satisfy the first order necessary conditions: the following
system is inconsistent

Vfl (a‘:)y < 0,
Vgi(z)y <0.

Which is
Vi(@)y =y <0,
Vi(Z)y =y2 <0,
Va1 (z)y = —y2 <0,

and we can not say any things about the efficiency of z. But if we use our second-
order necessary conditions: the system

Fl (y,Z) = (ylazl) <lew (07 0)
FQ(:U:Z) = (y2722) <lex (Oa 0)
Gi(y,2) = (-y2,—22 = 291) £, __(0,0)

have (y,z) = ((—1,0), (0, —1)) as solution. Hence by theorem 3.1, Z is not efficient.

Now, we shall state the dual form of theorem 3.1.

Theorem 3.2: Let Z satisfy the assumptions of theorem 3.1. Then, for each critical
direction y, there exist multipliers A\ € IR! and p € IR™

j=m

ZA vV fi(z) + Z Vg (z
]:m

(ZA VAR + Y w Vi@ )) (y,9) >0,
j=1

A>0, p>0, X\;=0 Vig B(y), pj =0 Vj¢&E(y).

By)={i€{l,.,1} | Vfi(z)y=0}
E(y)={je€{l,...,m}|gj(x) =0, Vg;(z)y=0}

Proof. Let y be a critical direction. Then, the system

VB &)z + V2 B (@) (y,y) <0,
Vo) ()2 + V2gpy) (@) (Y, y)

A
e
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has no solution z. Which is equivalent to

va(y ( )Z + v fB(y (j)( y)t < 07
Ve (E)2 + Ve () (y,»)t <0,
—t < 0.

has no solution z € IR™, t €R.

By Motzkin’s theorem of the alternative [7], there exist multipliers ¢ €R, X\ € IR!
and g € IR™ such that

j=m

Zkvfz +Z/’LJ
<Z>\ V2 fi() + ZMN g;(z )) (y,y) —€=0,

Since (A, &) > 0 implies (A > 0 and £ >0) or (A >0 and £ > 0), hence, there exist
multipliers A € R! and p € IR™ such that either (11) or (12) holds:

j=m

ZANL (@) + > n;Vy;(z
1

e (11)

<Z>‘ V2 fi@) + Y Vg,(x )) (y,9) >0,
1

A>0, p>0, /\iZJO Vi & B(y), p; =0 Vj & E(y).

j=m
Zszfz + Z ,u]Vg] ) 0

j=1

j=m
(Z/\sz, +ZMJV93 )yy)QO,

A>0, p>0, /\—0 Vig B(y), n;=0 Vj¢&E(y).

(12)

Let us assume that (12) does not hold. Which is equivalent to the inconsistency
of the system

1=l j=m
Z NV £i(E) + Z niV;(#) =

J m

(ZA V(@) + D Vi (E ))(y,y)—é“:O,

j=1
A>0, €20, p>0, \i=0 Vi¢g B(y), pj =0 Vj¢E(y).
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By Motzkin’s theorem of the alternative [7], there exist 2 and ¢ >0 satisfying

VB ()2 + V2 ) (@) (Y, y)t <0,
Ve ()2 + V2gpy,) (@) (y, y)t <O0.

Since (10) has no solution, we have ¢ = 0; hence,
va(y ( )Z<0 Vg y)( )Z<0
On the other hand,

View) @)y =0, Vs @y<o0,
Ve (@)y =0, Vgppu(®)y <O0.

because y is critical. Thus, it holds that

V(@) (y+ex) <0, Vgg(Z)(y+ez)<0.

for any sufficiently small € > 0, which contradicts the first-order necessary conditions
for efficiency. This completes the proof. a

Now we turn to discuss second-order sufficient conditions.

4 Sufficient Conditions for Efficiency
Theorem 4.1: Suppose that any f;, g; are quasiconvex and twice continuously differ-

entiable at Z € A. If for each critical direction y # 0, there exist A € IR' and p € R™
such that

ZAVfl +ZMV~%) 0, (13)

j=1

(ZA iV fi(@) + Z 1 V2g;(z )) (y,9) >0, (14)

j=1

A>0, p>0, \i=0 Vig B(y), uj =0 Vj&E(y). (15)
Then, Z is an efficient solution to problem (P).
Proof. Assume that for each critical direction y # 0, there exist A € IR!, and u € IR™
such that (13) - (15) hold, but & was not efficient solution to problem (P). Then, there
is ¢ € A such that

f(z) < f(Z) (16)
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From the quasi-convexity of f and g and (16) we obtaint

V(@) (z —7) <0,
Vgr(z)(z — ) <0.

We distinguish two cases:

o if Vf(Z)(z — %) <0, for d = x — Z, the following system

Vf(z)d <0,
Vor(z)d < 0.

is inconsistent, by Motzkin’s theorem of the alternative the following system

AV f(z) + uVg(z) =0,
A>0, p20, j;=0 Vj¢E

is inconsistent, which contradicts (13) and (14).

o if V. (Z)(z — ) =0, for at least one r € {1,...,1}, then, d = z — Z is a non zero
critical direction.

Take z(t) = Z + td, t€]0,1]
From the quasi-convexity of f, we have:
f(Z +td) — f(Z) = tVf(z)d + ngf(a‘:)(d, d) + o(t*) <O0.
Hence,
V(@) +/2(Vf(2)(d,d) + o(t*) /1) <0 (17)
Similary,
VgE(a‘:)d+t/2(Vng(§:)(d, d) + o(t?) /t2) <0. (18)

By assumption, there exist A € R! and u € IR™ such that (13) - (15) hold.
Multiplying (17) and (18) with A and u respectively, we summarize to get

i=l j=m
Y NVEE) + Y 1 Ve;(T)
i=1 j=1
i=l j=m
+t/2{ (Z ANV @)+ S u,-vzg,-(z«)) (d, d) + o(t2)/t2} <0
i=1 j=1
Noting expression (13) and t > 0, we obtain

1=l j=m
(Z NVEfi(E) + ) ujvzgj(i“)> (d, d) + o(t*) /t* 0.

i=1
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Using expression (15) again and ¢t — 01, we get

1=l j=m
(Z NVIFi(E) + ) NjV29j(f)> (d,d) <0

j=1

which contradicts (14). Therefore, Z is an efficient solution to problem (P). O
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