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Abstract

The aim of this paper is to state and prove some basic formulas related with the numerical

solution of the parameter estimation problem in nonlinear dynamical models. We consider

a general approach to solve the inverse problem and prove several gradient and hessian's

formulae for the continuous problem and for some of its discrete approximations. Regular

and sti� schemes for ODE models with constant or variable step size policy are included.

1 General Approach

1.1 The parameter estimation problem

We consider the following continuous optimization problem:

min J(u) =
sP
i=1

'
i
[zi(� i); �zi] ;

s.t. _x(t) = f (x(t); u; t) ; t 2 [0; T ];

x0 = l(u);

z(t) = g (x(t); u; t) ; t 2 [0; T ];

0 � � i < � i+1 � T; i = 1; :::; s� 1;

(1)

where: x 2 <n; u 2 <m; z 2 <p; '
i
: <p � <p ! <; f : <n �<m � [0; T ]! <n; l :

<m ! <n; g : <n � <m � [0; T ] ! <p: This means that we are modelling a dynam-

ical process by a n�dimensional system of nonlinearordinary di�erential equations,

which depends on an unknown m�vector of parameters u: To this end, a set of data

(measurements) f�z1; �z2; :::; �zsg of the observed p�vector variable z(:); at s di�erent
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instants of time f� 1; � 2; :::; �sg; is given and we should minimize J; a sum of functions

depending on model and observed vectors (most frequently it is a quadratic function

of the residuals (zi(� i) � �zi)). We make the usual assumptions that �s = T and the

model functions f; g; l; '
i
are continuously di�erentiable.

Parameter estimation problems for ODE systems (or ODE inverse problems) is

a classical matter and have been considered by many authors. Several methods and

points of view were proposed and special structures or statistical concepts were ex-

ploited (see for example [1], [3], [13] [19]). New schemes of numerical integration

were also designed in order to deal with sti� ODE (see [6], [9] and [4]), appearing

frequently in chemical reaction models (see also [20], [22]) and other important �elds

of applications.

In this article we are mainly interested in the numerical computation of the solu-

tion. It is clear that the problem (1) only can be approximately solved since, most

time, the exact solution of the nonlinear di�erential equation can not be exactly cal-

culated and the optimization algorithms are iterative process in character. Therefore,

we decided not to try to solve the continuous problem (1), but to transform it in such

a way that we obtain a simpler problem which gives us a satisfactory approximated

solution.

1.2 Problem transformation

The general idea is to use numerical integration schemes as constraints, instead of

the di�erential equation, transforming the continuous problem into a discrete one

which can be solved in an easier way. This transformation depends directly on the

numerical scheme of integration that is used. As a general example, we can consider

the following discrete problem in which the system of ordinary di�erential equations

is substituted by a multi-step scheme of variable order Qi and variable step size hi :

min Jk(u) =
kP
i=0

~'
i
[zi; ~zi] ;

s.t. xi+1 = xi + hiFi (xi; xi�1; :::; xi�Qi+1;u) ; i = 0; 1; 2; :::; k � 1;

x0 = l(u);

zi = gi (xi; u) ; i = 0; 1; 2; :::; k:

(2)

As a rule, the partition of integration:

t0 = 0; tk = T

ti+1 = ti + hi; i = 0; 1; :::; k � 1;

should contains the set of measurement times f� 1; �2; :::; �sg and hence, to each mea-

surement index j 2 f1; 2; :::; sg corresponds an integration index i 2 f0; 1; 2; :::; kg: If

we de�ne the index correspondence:

I(i) =

�
j if i corresponds to j;

0 otherwise,
; i = 0; 1; :::; k (3)
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and denote by M the set of integration indexes corresponding to measurements:

M = fi 2 f0; 1; 2; :::; kg j I(i) 6= 0g;

then, the functions ~'
i
in Jk(u) are de�ned by:

~'
i
[zi; ~zi] = '

I(i)[zi; ~zi]1M [i];

~zi = �zI(i);

where 1M is the characteristic function of the set M and '0; �z0 can be de�ned

arbitrarily:

The functions Fi can be taken in several forms. For example, the Adams integra-

tion formulae may enter in its de�nition, as a linear Predictor-Corrector scheme:

Fi (xi; xi�1; :::; xi�Qi+1; u) = K
Qi+1
0 f (yi+1; u; ti+1) +

QiX
j=1

K
Qi+1
j

f (xi�j+1; u; ti�j+1) ;

(4)

yi+1 = xi + hi

QiX
j=1

�
Qi

j
f (xi�j+1; u; ti�j+1) ; i = 0; 1; :::; k � 1: (5)

where �
Q

j
, K

Q

j
are the coe�cients of the Q�order Adams-Bashford and Adams-

Moulton schemes, respectively (see, for example, [23]).

The order policy of the scheme can be de�ned in many ways. For example, increase

Qi, step by step, until a given maximum order for the Corrector is attained Qi0 + 1

= Qmax; and then remain on it, Qi = Qmax � 1 for i � i0 :

Qi = min fi+ 1; Qmax � 1g; i = 0; 1; :::k � 1:

The substitution we made is some kind of "direct method" approach for the solu-

tion of the inverse problem.

1.3 Integration scheme for sti� problems

In 1976, Enright and Henrici proposed a family of implicit multistep-multiderivative

nonlinear Q�order schemes with uniform step length, having several theoretical and

practical advantages [4]. They are specially adapted for sti� problems and, for our

purpose, we used the following simpler and better known second order formula, for

stationary systems:

xi+1 = xi + h
QP
j=1

�
Q+2
j

f(xi�j+1; u) + h�
Q+2
0 f (xi+1; u)+

+h2�
Q+2
0 Dxf (xi+1; u) :f (xi+1; u) :

(6)
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In order to decrease the complexity of the calculation of the resulting nonlinear

equation and of the gradient computation, we considered also some semi-implicit

variants of such scheme. The idea was to improve the corrector evaluation, using

the Enright's second order formula as a recorrector. Some details of the variants and

gradient formulas can be seen below. For results on numerical experiments see [17].

2 Theoretical results

2.1 General gradient formula

From practical experience, it is a common opinion that, no matter the algorithm we

are using to solve a nonlinear optimization problem, the better the gradient is com-

puted the better the optimal solution of the problem is (approximately) calculated.

For this reason we recommend to avoid �nite di�erences for computing gradients

in this approach, and deduce and implement exact formulas, based in the following

general lemma:

Lemma 1: LetX;U; Y; Z be normed spaces, (x; u) 2 X�U; F : U ! Y andG : U ! Z

continuously Frechet di�erentiable operators de�ned in a neighborhood U of (x; u):

Suppose there exists an implicit function:

x = x(u) : V ! X; (7)

de�ned in neighborhood V of �u; continuously Frechet di�erentiable in V; which satis-

�es:

x(u) =x; (8)

G(x(u); u) = �; 8u 2 V; (9)

where � denotes the zero element of the normed space Z: Then, the composite func-

tional:

F : V ! Y; F(u) = F (x(u); u) (10)

is Frechet di�erentiable in u and the following gradient formulae holds:

DuF(u) = DxF (x; u) �M +DuF (x; u); (11)

where M 2 L(U;X) is any solution of the, so called, sensitivity equation:

DxG(x; u) �M = �DuG(x; u); (12)

and also

DuF(u) = �p �DuG(x; u) +DuF (x; u); (13)

where �p 2 L(Z; Y ) is any solution of the, so called, adjoint (or conjugate) equation:

p �DxG(x; u) = �DxF (x; u); (14)
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and the symbol L(A;B) denotes the normed space of continuous linear operators from

A to B:

Proof. By assumptions, F becomes Frechet di�erentiable and the chain rule gives:

DuF(u) = DxF (x; u) �Du�x(u) +DuF (x; u); (15)

Using now (14) we can write:

DuF(u) = ��p �DxG(x; u) �Dux(u) +DuF (x; u): (16)

Denote G(u) = G(x(u); u): Using (9) and again the chain rule, we obtain the

identity:

DuG(u) = DxG(x; u) �Dux(u) +DuG(x; u) = �; 8u 2 V; (17)

and then, settingM = Du�x(u); from (15) and (17) we have (11) and (12). In addition,

from (17) we also have:

DuG(x; u) = �DxG(x; u) �Dux(u); (18)

Substituying (18) in (16) we obtain (13).

Remark 1. Observe that if we de�ne a Lagrangian-type operator as usual:

L(x; u; p) = F (x; u) + p �G(x; u); (19)

x 2 X; u 2 U; p 2 L(Z; Y );

then, the equation (13) can be written as follows:

DuF(u) = DuL(x; u; �p); (20)

where �p is any solution of the equation (14), which in turn can be written:

DxL(x; u; p) = 0: (21)

Hence, this gives the following useful formulation of the Lemma 1.

Lemma 2: Under the conditions above, the gradient of the function F(u) = F (x(u); u);

at the point (�x; �u) = (x(�u); �u); can be calculated through the following algorithm:

1) Write down the Lagrangian functional L(x; u; p);

2) Compute the partial derivative DxL(x; u; p) at the point (�x; �u; p);

3) Find a solution �p 2 L(Z; Y ) of the equation (21),

4) Fix p = �p and compute the partial derivative DuL(x; u; �p) at (�x; �u);

5) Set DuF(�u) = DuL(�x; �u; �p):

c
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Remark 2. The advantage of using formula (13) instead of (11) or viceversa, depends

on the dimension of the spaces involved. Note that we do not need to know neither

the implicit function x(u) nor its derivative. But not always the equations (14) or

(12) can be solved. A su�cient condition for the existence of a solution of (14) is that

the linear operator DxG(x; u) be right-invertible. Left-invertibility of DxG(x; u) is

the analogous condition for a solution of (12). Nevertheless, even when the equations

(14) and (12) are not solvable, function F(u) is still Frechet di�erentiable but, in that

case, we only can use the implicit formula (15).

We will see now some applications of this Lemma for gradient computation. The

problem of computing gradients in situations similar to the one we considered here is

a classical matter for one step schemes (see, for example, [21]). Recently, it has been

analyzed in relation to automatic di�erentiation for Runge-Kutta schemes in ODE

models [2] and for �nite di�erences schemes in PDE models [5], including applications

to optimal control problems. The algorithm given by Lemma 2 is a general solution

for the gradient computation of discrete and continuous dynamical models, as the

following examples show.

2.2 Gradient for continuous models

2.2.1 The continuous problem transformation

In the continuous problem (1), we consider:

x(:) 2 C1;n; z(:) 2 C0;p; u 2 <m; (22)

where Cr;k = Cr([0; T ];<k) denotes the Banach space of r�times continuously di�er-

entiable functions on [0; T ]; with image into <k; and the uniform r�norm:

kxk
C
r;k =

rX
j=0

max
t2[0;T ]





djx(t)dtj






<
k

;

with the usual convention
d
0
x(t)

dt0
= x(t):

The di�erential constraint of (1), together with the initial condition, are equivalent

to the integral equation:

x(t) = l(u) +

tZ
0

f(x(� ); u; �)d� ; (23)

therefore, de�ning the functional:

F (x; u) =

sX
i=1

�i(x; u) ; F : C1;n �<
m
! <; (24)
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where the �i : C
1;n �<m ! < are given by the continuously di�erentiable functions:

�i(x; u) = '
i
[g(x(� i); u; � i); �zi]; i = 1; :::; s;

and introducing the operator:

G(x; u)(t) = x(t) � l(u)�

tZ
0

f(x(� ); u; �)d� , G : C1;n �<
m
! C

1;n; (25)

we can rewrite the problem (1) in the following equivalent form:

min J(u) = F (x; u);

s.t. G(x; u) = �n:

(x; u) 2 X � U;

(26)

where, with the notation of the Lemma 1, we have:

X = C
1;n; Y = <; Z = C

1;n , U = <
m; (27)

and �n is the null function in C1;n:

2.2.2 Application of the Lemma

In order to apply Lemma (1) we compute the Frechet di�erentials in a generic point
(�x; �u) 2 X � U: For the functional F; a direct computation yields the formula:

D(x;u)F (�x; �u)(�; v) =

sX
i=1

Dz'i
[g(�x(� i); �u; � i); zi] [gx(�x(� i); �u; � i)�(� i) + gu(�x(� i); �u; � i)v ] ;

(28)

for all (�; v) 2 C1;n�<m; since g and '
i
are continuously di�erentiable functions and

the evaluation in � i is a linear operator.

Now we shall prove that (x; u) ! D(x;u)F (x; u) is a continuous operator at any

point (�x; �u) of C1;n � <m using standard arguments of uniform continuity: In fact,

consider the compact set:

R = Im(�x) = fx 2 <n j 9 t 2 [0; T ] : x = �x(t)g ;

its corresponding ��neighborhood:

R� =

�
x 2 <n j d(x;R) = min

y2R

kx� yk
<
n � �

�
;

and the unit closed ball at �u :

B = fu 2 <m j ku� �uk
<
m � 1g:

c
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By the uniform continuity of the function (x; u)! Dz'i[g(x; u; � i); �zi]gx(x; u; � i)

in the compact set R� � B; for all i = 1; :::; s; and for all " > 0; there exists �1 2

(0; 1); such that, for arbitrary (x1; u1); (x2; u2) 2 R� � B; satisfying kx1 � x2kC1;n +

ku1 � u2k<m < �1; we have:

jDz'i[g(x1; u1; � i); �zi]gx(x1; u1; � i)�Dz'i[g(x2; u2; � i); �zi]gx(x2; u2; � i)j <
"

s
:

Taking x 2 C1;n such that kx� �xk
C
1;n < minf�; �1

2
g; and ku� �uk

<
m < �1

2
; then:

(x(� i); u) 2 R
�
�B and k x(� i)� �x(� i)k<n + ku1 � u2k<m < �1;

and we obtain:

jDxF (x; u)(�)�DxF (�x; �u)(�)j �

�
sP
i=1

kDz'i[g(x(� i); u; � i); �zi]gx(x(� i); u; � i)�

�Dz'i[g(�x(� i); �u; � i); �zi]gx(�x(� i); �u; � i)k<p k�(� i)k<n �

� " k�k
C
1;n :

Analogously, a similar inequality can be proved for DuF; and therefore:

D(x;u)F (x; u)�D(x;u)F (�x; �u)



(C0;p)�

� ";

which implies continuity of D(x;u)F (x; u):

On the other hand, the partial derivatives of G have the form:

DxG(x; u)(�)(t) = �(t)�

tZ
0

fx(x(� ); u; � )�(�)d� (29)

DuG(x; z; u)(v)(t) = �

2
4Dul(u) +

tZ
0

fu(x(� ); u; � )d�

3
5 v (30)

and the Frechet di�erential:

D(x;u)G(x; u)(�; v)(t) = �(t)�Dul(u)v�

tZ
0

(fx(x(� ); u; � )�(�) + fu(x(� ); u; �)v ) d�

(31)

To prove the continuity of D(x;u)G; we proceed in the same way as before, using

the uniform continuity of fx(:); fu(:) and Dul(:) over R
� � B � [0; T ] and choosing

appropiate bounds. We obtain:

�D(x;u)G(x; u) �D(x;u)G(�x; �u)
�
(�; v)



 � " (k�k
C
1;n + kvk

<
m) ;

c
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which gives the continuity of D(x;u)G:

We still need that the Frechet partial di�erential DxG(�x; �u) should be a homeo-

morphism because, in that case, we can apply the implicit function theorem (see [11]

or [7]) and Lemma 1. In fact, DxG(�x; �u) is a bijective, linear and continuous operator,

since for �xed (�x; �u), the equation:

y(t) = �(t)�

tZ
0

fx(x(� ); u; � )�(� )d� ; t 2 [0; T ];

is a Volterra integral equation of the second type, with bounded kernell, and therefore,

for every function y(t) 2 C1;n; there exists a unique solution �(t) 2 C1;n of the integral

equation (see [11] or [7]). Hence, the inverse operator exists and is continuous. This

proves that DxG(�x; �u) is a homeomorphism.

Then, by the implicit function theorem, there exists a neighborhood V � <m of

�u where the implicit function is de�ned and is Frechet di�erentiable:

x = x(u) ; x : V ! C
1([0; T ];<n): (32)

By the above Lemma, the composite function:

F : V ! <; F(u) = F (x(u); u)

is Frechet di�erentiable in u; we have the two formulae:

DuF(u) = DxF (�x; �u)Dux(�u) +DuF (�x; �u); (33)

DuF(u) = p �DuG(x; u) +DuF (�x; �u); (34)

and p 2
�
C1;n

�
�

is an arbitrary solution of the equation:

p �DxG(x; u) = �DxF (x; u): (35)

Note that (33) and (34) are two equivalent, but di�erent expresions of the con-

tinuous gradient rJ(�u) = DuF(u): The �rst one uses the n � m�matrix Dux(�u);

so called "sensitivity matrix", and the second one uses the solution p of the adjoint

equation, when it happens to exist.

c
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2.2.3 Gradient expression using sensitivity matrix

In this case, the formula (33) is not so useless as it seems in a �rst sight. We can

use the sensitivity equation (12) which allows us to compute the sensitivity matrix

Dux(�u), and it is possible to give a direct proof of this. In fact, as we already saw in

(23), the function x(t) = x(u)(t) is a solution of the integral equation:

x(t) = l(u) +

Z
t

0

f(x(� ); u; �)d� ; t 2 [0; T ]; (36)

and we proved that the operator u ! x(u); from <m to C1;n; is de�ned in a neigh-

borhood V of �u and is Frechet di�erentiable at �u: Therefore, the Frechet di�erential

operator Dux(�u); de�ned in V , satis�es the integral equation:

Dux(�u)(t) = Dul(�u) +

Z
t

0

[fx(�x(� ); �u; �)Dux(�u)(� ) + fu(�x(� ); �u; � )] d� ; t 2 [0; T ]:

(37)

where this last formula has been obtained computing the Frechet derivative of the

operator given by the right hand side of (36). Then, the sensitivity matrix M(t) =

Dux(�u)(t) can be found solving the equivalent matrix di�erential equation:

dM(t)

dt
= fx(�x(t); �u; t)M(t) + fu(�x(t); �u; t); t 2 [0; T ];

M(0) = Dul(�u):
(38)

The �nal expresion for the gradient, when we use (33), is the following:

rJ(�u) =

sX
i=1

[Dx�i(�x(� i); �u)M(� i) +Du�i(�x(� i); �u)] ; (39)

or

rJ(�u) =

sX
i=1

Dz'i[g(�x(� i); �u; � i); zi] [gx(�x(� i); �u; � i)M(� i) + gu(�x(� i); �u; � i)] ; (40)

where the matrix M(t) is the solution of (38).

2.2.4 Gradient expression using adjoint equation

In order to apply the second formula (34), we must �nd a solution of the adjoint

equation. This a non trivial task, and we shall see that it yields a more complicated

expression for the continuous gradient. Then, this second formula is used only in some

particular cases. Nevertheless, as we shall show below, for the gradient of discrete

time dynamical models the adjoint form is always preferred.

We start using the expression of DxF from (28) in (35), obtaining:

p �DxG(x; u)(�) =

sX
i=1

Dz'i[g(x(� i); u; � i); �zi]gx(x(� i); u; � i)�(� i): (41)

c
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According to the Riesz theorem, which characterizes continuous linear functionals

over C0;n; we will try to �nd the solution p 2
�
C1;n

�
�

of (41) in the following form:

p[y] =

Z
T

0

y(� )d (� );

where the integral is considered in the Riemann-Stieljes sense, and the bounded vari-

ation function  (t) will be conveniently chosen. Note that the solution does not

necessarily exist, since
�
C0;n

�
�

is strictly contained in
�
C1;n

�
�

; but if it do exists, then

it should be unique, since DxG(x; u) is an homeomorphism.

The right hand side of the equality (41) suggests that  must have jump discon-

tinuities at the points f� i; i = 1; :::; sg: Recalling that � s = T; we de�ne:

p[y] =
P
s�1

i=1 [ (� i + 0)�  (� i � 0)]
t

y(� i)�  (� s � 0)y(�s)+

+
R
�1

0

d (�)

d�
y(� )d� +

P
s�1
i=1

R
� i+1

� i

d (�)

d�
y(�)d� ;

where  (t) is supposed to have continuous derivative at each open subinterval (0; �1),

(� i; � i+1); i = 1; :::; s:

Using (29) and notations:

�f(t) = f(x(t); u; t);

�g(t) = g(x(t); u; t);
(42)

in (41) we have:

p �DxG(x; z; u)(�) =
P
s�1
i=1 [ (� i + 0)�  (� i � 0)]

t
�
�(� i)�

R
� i

0
�fx(� )�(� )d�

�
�

� t(� s � 0)
�
�(� s)�

R
�s

0
�fx(� )�(� )d�

�
+
R
�1

0

d 
t(�)

d�

�
�(� )�

R
�

0
�fx(�)�(�)d�

�
d�+

+
P
s�1

i=1

R
�i+1

�i

d 
t(�)

d�

�
�(� )�

R
�

0
�fx(�)�(�)d�

�
d� =

sP
i=1

Dz'i[�g(� i); �zi]�gx(� i)�(� i):

(43)

The last equality allows us to de�ne the values of the jumps of  at the points of

discontinuity:

 (� i + 0)�  (� i � 0) = Dz'i[g(x(� i); u; � i); �zi]gx(x(� i); u; � i); i = 1; :::; s;(44)

 (� s + 0) =  (T + 0) = 0:

Simplifying and introducing the terms � t(� s + 0)
R
�s

0
�fx(� )�(� )d� in (43), we

obtain the identity:

�
P
s

i=1 [ (� i + 0)�  (� i � 0)]
t
R
� i

0
�fx(� )�(� )d�+

+ t(� s + 0)
R
�s

0
�fx(� )�(� )d� +

R
�1

0

d 
t(�)

d�

�
�(� )�

R
�

0
�fx(�)�(�)d�

�
d�+

+
P
s�1

i=1

R
� i+1

� i

d 
t(�)

d�

�
�(� )�

R
�

0
�fx(�)�(�)d�

�
d� = 0:

(45)
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Integrating by parts we have:R
�1

0

d 
t(�)

d�

�R
�

0
�fx(�)�(�)d�

�
d� =

=  (� 1 � 0)
�R

�1

0
�fx(�)�(�)d�

�
d� �

R
�1

0
 (� ) �fx(� )�(� )d�

and R
�i+1

� i

d 
t(�)

d�

�R
�

0
�fx(�)�(�)d�

�
d� =

=  (� i+1 � 0)
�R

�i+1

0
�fx(�)�(�)d�

�
d� �  (� i + 0)

�R
� i

0
�fx(�)�(�)d�

�
d��

�
R
�i+1

�i
 (� ) �fx(� )�(� )d� :

Using these last expressions in (45):

�
P
s

i=1 [ (� i + 0)�  (� i � 0)]
t
R
�i

0
�fx(� )�(� )d�+

+ t(�s + 0)
R
�s

0
�fx(� )�(� )d� +

R
�1

0

d 
t(�)

d�
�(� )d��

� (� 1 � 0)
�R

�1

0
�fx(�)�(�)d�

�
d� +

R
�1

0
 (� ) �fx(� )�(� )d�+

+
P
s�1

i=1

R
�i+1

�i

d 
t(�)

d�
�(� )d��

�
P
s�1

i=1

�
 (� i+1 � 0)

�R
�i+1

0
�fx(�)�(�)d�

�
d� �  (� i + 0)

�R
�i

0
�fx(�)�(�)d�

�
d�
�
+

+
P
s�1

i=1

R
�i+1

�i
 (� ) �fx(� )�(� )d� ;

and simplifying, we obtain:

R
�1

0

h
d 

t(�)

d�
+  (� ) �fx(� )

i
�(� )d�+

+
P
s�1
i=1

R
� i+1

� i

h
d 

t(�)

d�
+  t(� ) �fx(� )

i
�(� )d� = 0:

Since � is arbitrary, we have that  must be the solution of the equation:

d t(t)

d�
= � t(t)fx(�x(t); �u; t); (46)

at each subinterval (0; � 1), (� i; � i+1); i = 1; :::; s, and satis�es the initial (or jump)

conditions given by (44). The exact values of  at the points of discontinuities:

 (� i); i = 1; :::; s; are not important for gradient calculation, but only the values of

the �nite jumps [ (� i + 0)�  (� i � 0)] : The function  can be de�ned left or right

continuous at those points, arbitrarily, but for the extreme points 0 and � s = T; it is

usual to consider  as right continuos and left continuous, respectively, i.e.

 (0) =  (0 + 0);

 (� s) =  (� s � 0):
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Substituting the expression of p in (34) we have:

DuF(�u)(v) = �
P
s

i=1 [ (� i + 0)�  (� i � 0)]
t

�
Dul(u) +

�1R
0

�fu(� )d�

�
v+

+ t(� s � 0)

�
Dul(u) +

�sR
0

�fu(� )d�

�
v�
R
�1

0

d 
t(�)

d�

�
Dul(u) +

�R
0

�fu(�)d�

�
v d��

�
P
s�1
i=1

R
�i+1

�i

d 
t(�)

d�

�
Dul(u) +

�R
0

�fu(�)d�

�
v d� +

sP
i=1

Dz'i[�g(� i); �zi]�gu(� i)v;

where we used again the notations (42).

Integrating by parts and simplifying, as we did above, we obtain the �nal expres-

sion for the gradient:

rJ(�u) = DuF(�u) = � 
t

(0)Dul(u) +
R
�1

0
� 
t

(� )fu(x(t); u; t)d�+

+
P
s�1
i=1

R
�i+1

�i

� 
t

(� )fu(x(t); u; t)d� +
sP
i=1

Dz'i[g(x(� i); u; � i); �zi]gu(x(� i); u; � i);

(47)

where � (t) is the solution of the adjoint equation (46) at each subinterval (0; �1),

(� i; � i+1); i = 1; :::; s, with the initial (jump) conditions given by (44).

The advantage of the expression (47), in comparison with (39), is that the adjoint

equation (46) is a vector instead of a matrix di�erential equation, i.e. we have n

di�erential equations for the adjoint function, instead of n2 equations, given by (38),

for the sensitivity matrix. As drawbacks, we can mention a more di�cult integration

of the system (46) because, during computation, we have to keep in mind the dis-

continuities, and also the more complex form of the gradient, which some times is an

obstacle for further theoretical developments.

2.3 Gradient for discrete models with �xed steplengths

2.3.1 Gradient for multistep explicit models

We consider now the discrete problem (2). First, we suppose that the integration step

lengths hi are given and �xed, for all i = 0; 1; :::; k � 1: A usual example is when a

uniform step length hi = h; 8i; is chosen. In the next section we analyze a general

model for automatic step length control.

Introduce the notations:

x = (x0; x1; :::; xk)
t;

xi = (x0; x1; :::; xi+1�Qi
)t; i = 0; 1; :::; k � 1;

�i(xi; u) = ~'
i
[gi(xi; u); �zI(i)]; i = 0; 1; :::; k;

~'
i
[zi; ~zi] = '

I(i)[zi; �zI(i)]1M [i]; i = 0; 1; :::; k;
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~�j(xj ; u) = '[gJ (j)(xJ (j); u); �zj ]; j = 1; 2; :::; s;

where I : f0; 1; :::; kg ! f0; 1; :::; sg was de�ned in (3) and J : f1; :::; sg ! f0; 1; :::; kg

is a left inverse of I over f1; :::; sg, i.e. J (j) is equal to the unique i 2 f0; :::; kg such

that I(i) = j: We also introduce the operators:

F (x; u) =

kX
i=0

�i(xi; u) =

sX
j=1

~�j(xj ; u);

G(x; u) = (x0 � l(u); x1 � x0 � h0F0(x0; u); :::; xk � xk�1 � hk�1Fk�1(xk�1; u))
t

;

and it is easy to see that the problem (2) can be written in the following equivalent

form:
min Jk(u) = F (x; u);

s.t. G(x; u) = 0kn:

(x; u) 2 X � U;

(48)

where:

X = <
k�n; U = <

m:

If the functions ~'
i
; gi and Fi are de�ned for all (x; u) 2 X�U and are continuously

di�erentiable then, the operators F and G are also continuously di�erentiable and we

have the following expressions for the partial derivatives:

DxF (x; u) =
�
Dx�0(x0; u) Dx�1(x1; u) � � � Dx�k(xk ; u)

�
;

DuF (x; u) =

kX
i=0

Du�i(xi; u);

DxG(x; u) =

2
66664

I 0 � � � 0

�I � h0Dx0
F0(x0; u) I � � � 0

�h1Dx0
F1(x1; u) �I � h1Dx1

F1(x1; u) � � � 0

� � � � � � � � � � � �

�hk�1Dx0
Fk�1(xk�1; u) �hk�1Dx1

Fk�1(xk�1; u) � � � I

3
77775 ;

DuG(x; u) =

2
6664

�Dul(u)

�h0DuF0(x0; u)
...

�hk�1DuFk�1(xk�1; u)

3
7775 :

Furthermore, it is clear that the di�erence scheme de�nes an implicit continuously

di�erentiable function x(u); such that G(x(u); u) = 0; for all u 2 U: We can apply
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Lemma 1 and then, the composite function F(u) = F (x(u); u) is di�erentiable at any

�u 2 U; and the following formulae hold:

rJk(�u) = DxF (�x;�u)Dux(�u) +DuF (�x; �u); (49)

rJk(�u) = �p �DuG(�x; u) +DuF (�x; �u); (50)

where we denote �x = x(�u). The (k+1) �n�m�matrix Dux(�u) is the solution of the

algebraic matrix system:

DxG(�x; �u)Dux(�u) +DuG(�x; �u) = �(k+1)n�m

and �p is the solution of the adjoint vector system:

ptDxG(�x; �u) = �DxF (�x; �u):

If we de�ne Dux(�u) = (M0;M1; :::;Mk)
t; Mi 2 <n�m; and �p = (p0; p1; :::; pk)

t;

pi 2 <
n, it is easy to see that both auxiliary systems can be rewritten in the following

form:

M0 = Dul(�u);

Mi+1 =Mi + hi

"
QiP
j=1

Dxi�j+1
Fi(�xi; �u)Mi�j+1 +DuFi(�xi; �u)

#
; i = 0; 1; :::; k � 1;

(51)

pt
k
= �Dx�k(xk ; �u)

pt
j
= pt

j+1 +
P

k�1

i=j p
t

i+1hiDxi
Fi(�xi; �u)�Dx�j(�xj ; �u); j = k � 1; :::; 0:

(52)

and then, the �nal expressions for both gradients follows:

rJk(�u) =

kX
i=0

[Dx�i(�xi; �u)Mi +Du�i(�xi; �u)] ; (53)

rJk(�u) = �pt0Dul(�u)�

k�1X
i=0

pt
i+1hiDuFi(�xi; �u) +

kX
i=0

Du�i(�xi; �u): (54)

Now it is clear that, in the case of discrete dynamical models, formula (54) is

always preferred against (53) since the discrete adjoint system (52) is n�dimensional

and the discrete sensitivity system (51) is n � m�dimensional. In fact, the total

number of dot products in (52) and (54) is less than (k � n+ (k + 1) �m); while the

number of dot products in (51) and (53) is greater than ((k � 1)2 � n2 + k � n �m);

and this means a great handicap in computational e�orts.
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2.3.2 Gradient for implicit and semi-implicit models

Up to now, we constraint ourselves to explicit schemes, but similar formulas can be

derived for implicit schemes, following the above general procedure. For example, if

the right hand side function depends on xi+1; F (xi+1; xi; :::; u); the only di�erence

appearing is that both auxiliary systems become implicit schemes, but the gradient

expressions are not more complex and can be easily obtained. The results for the

particular case of Enright's scheme and a its semi-implicit variant for stationary ODE

models are the following:

The implicit model is:

min J(u) =
kP
i=0

~'
i
[zi; �zi] ;

s.t. xi+1 = xi + h
QiP
j=1

�
Qi+2
j

fi�j+1(xi�j+1; u) + h�
Qi+2
0 fi+1 (xi+1; u)+

+h2�
Qi+2
0 Dxfi+1 (xi+1; u) :fi+1 (xi+1; u) ; i = 0; 1; 2; :::; k� 1;

x0 = l(u);

zi = gi (xi; u) ; i = 0; 1; 2; :::; k:

and the corresponding gradient formula follows:

rJ(�u) = �

kX
i=1

h
n
pt
i+1�

Qi+2
0 Duf(xi+1; u) + pt

i+1h�
Qi+2
0 [Dxuf (xi+1; u) f (xi+1; u)+

+Dxf (xi+1; u)Duf (xi+1; u)]g �

k�1X
r=0

Qr�1X
i=r

hpt
i+1�

Qi+2
i+1�rDuf (xr; u)�

�

kX
i=0

�t
i
Dt

u
g (xi; u)� pt0D

t

u
l(�u);

where the multipliers pi and �i are the solutions of the following implicit discrete
system:

pti

h
I � h:�

Qi+2
0 Dxfi (xi; u)� h2�

Qi+2
0

�
Dxxfi(xi; u):fi+1(xi; u) +D2

xfi(xi; u)
�i

=

pti+1 + �ti Dt

xgi (xi; u) +
P

k�1
r=0

P
Qi�1
j=1 h

h
qtj+1�

Qi
j+i�1 + qctj+1K

Qi+1
j+i�1 + ptj+1�

Qi+2
j+i�1

i
Dxfi (xi; u) ;

i = 0; 1; :::; k � 1;

p
t

k

h
I � h:�

Qi+2
0 Dxfk (xk; u)� h

2
�
Qi+2
0

�
Dxxfk(xk; u):fk(xk; u) +D

2
xfk(xk; u)

�i
= �

t

kDxgk(xk; u)

�
t

i = �Dx'(zi; u); i = 0; 1; :::; k
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The semi-implicit model is a predictor-corrector-recorrector scheme:

min J(u) =
kP
i=0

~'
i
[zi; �zi] ;

s.t. yi+1 = xi + h
QiP
j=1

�
Qi

j
fi�j+1(xi�j+1; u);

yc
i+1 = xi + h K

Qi+1
0 fi+1(yi+1; u) + h

QiP
j=1

K
Qi+1
j

fi�j+1(xi�j+1; u);

xi+1 = xi + h
QiP
j=1

�Qi+2
j

fi�j+1(xi�j+1 ; u) + h�Qi+2
0 fi+1 (xi+1; u)+

+h2�
Qi+2
0 Dxfi+1(y

c

i+1; u):fi+1(y
c

i+1; u); i = 0; 1; 2; :::; k � 1;

x0 = l(u);

zi = gi (xi; u) ; i = 0; 1; 2; :::; k:

and the corresponding gradient formula follows:

rJ(�u) = �
P
k

i=1 h
h
qct
i+1K

Qi+1
0 Duf(yi+1; u) + pt

i+1�
Qi+2
0 Duf(xi+1; u)+

pt
i+1h�

Qi+2
0

�
Dxuf(y

c

i+1; u)f(y
c

i+1; u) +Dxf(y
c

i+1; u)Duf(y
c

i+1; u)
�i
�

�
P
k�1
r=0

P
Qr�1
i=r h

h
qt
i+1�

Qi

i+1�r + qct
i+1K

Qi+1
i+1�r + pt

i+1�
Qi+2
i+1�r

i
Duf (xr; u)�

�
P
k

i=0 �
t

i
Dt

u
g (xi; u)� pt0D

t

u
l(�u)

where the multipliers pi; qi; q
c

i
and �i are the solutions of the following simpler

equations:

pt
i

h
I � h:�Qi+2

0 Dxfi (xi; u)
i
= qt

i+1 + qct
i+1 + pt

i+1 + �t
i
Dxg

t

i
(xi; u)+P

k�1

r=0

P
Qi�1

j=1 h
h
qt
j+1�

Qi

j+i�1 + qct
j+1K

Qi+1
j+i�1 + pt

j+1�
Qi+2
j+i�1

i
Dxfi (xi; u) ;

i = 0; 1; :::; k � 1

pt
k
= �t

k
Dxg

t

k
(xk; u)

qt
i+1 = h � qct

i+1K
Qi+1
0 Dxfi+1(yi+1; u) ; i = 0; 1; :::; k � 1;

qct
i+1 = h2:pt

i+1�
Qi+2
0

�
Dxxfi+1(y

c

i+1; u):fi+1(y
c

i+1; u) +D2
x
fi+1(y

c

i+1; u)
�
;

i = 0; 1; :::; k � 1;

�t
i
= �Dx'(zi; u) ; i = 0; 1; :::; k:

2.4 Gradient for discrete models with automatic steplength

control

All the common used software for numerical ODE integration contains an automatic

step length selection, which takes into account the behavior of the right hand side

during computation. The step length control is always based in an estimation of the
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local error and its selection is performed making this error estimate less than a given

tolerance. At each integration step, several trial step lengths can be tested until a

convenient one is found, i.e. one whose estimated error is small enough. In what

follows, we propose a model for automatic steplength selection which, in our opinion,

cover almost all the common used ideas for step control policy.

Suppose we are integrating the ODE system of the continuous problem (1). We

denote by hi;j the j�th trial steplength at integration step i:We assume that the max-

imum number of trials is equal to jmax; and it is the same number for all integration

steps. This is not a heavy assumption because, at the beginning of the computation,

an initial steplength hi;1; satisfying hmin < hi;1 < T; is given and succesive decreasing

lengths hi;j are tested until we have a success or a failure. In most cases, a failure

ocurred when hi;j becomes less than a prescribed minimum length hmin: Therefore,

the maximum number of trials is bounded above and satis�es:

jmax � Int

�
T

hmin

�
+ 1;

where Int[x] denotes the greater integer less than or equal to x: On the other hand,

in practice, the number of tested trials ji is di�erent at each iteration i and very

frequently ji is less than jmax. But the assumption ji = jmax; i = 0; 1; :::; k � 1; has

only theoretical meaning, as it can be seen later, and it simpli�es further analysis. In

addition we suppose the integration process is always successful because, otherwise,

the computation is stopped and neither gradient formula nor convergence analysis

have any sense. We call this the "always successful" assumption.

We denote by ei;j 2 <; the local error estimate corresponding to hi;j : The accepted

step at i is one of the hi;j and is denoted by hi: Analogously, the corresponding

accepted error, denoted by ei; is one of the trial error estimates ei;j : At each step i;

the initial trial hi;1 is constructed as a product of a function of the last accepted error

times the last accepted step:

hi;1 = R(ei�1)hi�1; i = 1; 2; :::; k � 1;

with the exception of i = 0, for which is supposed that it is a function of both, the

initial state and the parameter vector:

h0;1 = Q(x0; u):

After an unsuccessful trial step hi;j , which means that its corresponding error

estimate ei;j is not less than or equal to some given tolerance, say " > 0; the next

trial is chosen multiplying hi;j by a function of ei;j :

hi;j+1 = r(ei;j)hi;j ; i = 0; 1; :::; k � 1; j = 1; 2; :::; jmax � 1:
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The error estimate can be obtained in several forms. For example, recomputing

with half of the current steplength or using another scheme of higher order, etc... In

most cases, it can be considered as a function of the vector xi = (xi; xi�1; :::; xi�Qi
);

the parameter vector u and the trial steplength hi;j :

ei;j = E(xi; u; hi;j); i = 0; 1; :::; k � 1; j = 1; 2; :::; jmax � 1:

Finally, our model requires the explicit link between hi;j and hi; and between ei;j
and ei: For this end, we de�ne the following sequence of cartesian products of sets:

[0; "]
(1)

= [0; "] ;

[0; "]
(j+1)

= [0; "]
c
� [0; "]

(j)
; j = 1; :::; jmax;

where [0; "]
c
denotes the complement set <n [0; "]. it is easy to see that, under

the "always successful" assumption, for each i there exists one and only one index

ji 2 f1; :::; jmaxg such that, the ji�dimensional array (ei;1; :::; ei;ji) belongs to the set

[0; "]
(ji) : Note that the "accepted" index ji corresponds exactly to the �rst occasion

when the error ei;j is less than or equal to ": Hence,

hi =

jmaxX
j=1

hi;j1[0;"](j) (ei;1; :::; ei;j) ; i = 0; 1; :::; k � 1;

and

ei =

jmaxX
j=1

ei;j1[0;"](j) (ei;1; :::; ei;j) ; i = 0; 1; :::; k � 1;

where 1A(x) = 1; for x 2 A; and 1A(x) = 0; otherwise. Observe that:

1[0;"](j) (ei;1; :::; ei;j) =

�
1 if ei;l =2 [0; "]; for l < j; and ei;j 2 [0; "] ;

0 otherwise,

and we can even write an exact formula for the accepted index at step i :

ji =

jmaxX
j=1

j 1[0;"](j) (ei;1; :::; ei;j) ; i = 0; 1; :::; k � 1:

Then, one model for parameter estimation, using ODE integrators with automatic
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steplength control, is the following:

min Jh;k(u) =
kP
i=0

~'
i
[zi; �zi] ;

s.t. xi+1 = xi + hiFi (xi; xi�1; :::; xi+1�Qi
;u) ; i = 0; 1; 2; :::; k � 1;

x0 = l(u);

h0;1 = Q(x0; u);

hi;j+1 = r(ei;j)hi;j ; i = 0; 1; :::; k � 1; j = 1; 2; :::; jmax � 1;

ei;j = E(xi; u; hi;j); i = 0; 1; :::; k � 1; j = 1; 2; :::; jmax � 1;

ei = eji =
P
jmax

j=1 ei;j1[0;"](j) (ei;1; :::; ei;j) ; i = 0; 1; :::; k � 1;

hi;1 = R(ei�1)hi�1; i = 1; 2; :::; k � 1;

hi = hji =
P
jmax

j=1 hi;j1[0;"](j) (ei;1; :::; ei;j) ; i = 0; 1; :::; k � 1;

zi = gi (xi; u) ; i = 0; 1; 2; :::; k:

(55)

Here, all the vectors x = (x0;:::; xk);� = (e0;1; :::; ek�1;jmax
); e = (e0; :::; ek�1);H =

(h0;1; :::; hk�1;jmax
); h = (h0; :::; hk�1) enter as "state" variables and u is the un-

known parameter vector. Assuming continuous di�erentiability for all the functions

~'
i
; Fi; l; Q; r; E;R; gi; with respect to their arguments, it is not di�cult to prove that

Lemma 1 can be applied again. Then, the gradient rJh;k(u) can be computed fol-

lowing the same algorithm given above. We shall show only the landmarks of the

gradient calculation, in adjoint form, and leave the details to the reader.

Keeping the same notation as before, the Lagrangian function can be written as

follows:

L(x;�; e;H;h; u) =

=
kP
i=0

�i(xi; u) +
k�1P
i=0

pt
i+1 [xi+1 � xi � hiFi (xi; xi�1; :::; xi+1�Qi

;u)] + pt0[x0 � l(u)]+

+�0;1 [h0;1 �Q(x0; u)] +
k�1P
i=0

jmaxP
j=1

�i;j+1 [hi;j+1 � r(ei;j)hi;j ] +

+
k�1P
i=0

jmaxP
j=1



i;j

[ei;j �E(xi; u; hi;j)] +
k�1P
i=0

�
i

h
ei �

P
jmax

j=1 ei;j1[0;"](j) (ei;1; :::; ei;j)
i
+

+
k�1P
i=0

�i;1 [hi;1 �R(ei�1)hi�1] +
k�1P
i=0

�i

h
hi �

P
jmax

j=1 hi;j1[0;"](j) (ei;1; :::; ei;j)
i
;

where pi; �i;j ; 
i;j ; �i and �i are the adjoint variables. Computing derivatives with

respect to each one of the state variables, and equating to zero, we obtain the following

adjoint (backward) system of di�erence equations:

pt
k
= �Dx�k(xk; u);

pt
t
= pt

t+1 +
k�1P
i=t

pt
i+1hiDxt

Fi(xi; u)�Dx�t(xt; u)+

+
k�1P
i=t

jmaxP
j=1



i;j
Dxt

E(xi; u; hi;j) + �0;1DxQ(x0; u)1f0g(t); t = k � 1; :::; 0;

(56)

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 199

�k�1 = 0;

�
k�1 = pt

k
Fk�1(xk�1; u);



t;jmax

= �t 1[0;"](jmax) (et;1; :::; et;jmax
) ; t = k � 1; :::; 0;

�t;jmax
= 


t;jmax
DhE(xt; u; ht;jmax

) + �
t
1[0;"](jmax) (et;1; :::; et;jmax

) ; t = k � 1; :::; 0;



t;s

= �t;s+1Der(et;s)ht;s + �t 1[0;"](s) (et;1; :::; et;s) ; s = jmax � 1; :::; 1; t = k � 1; :::; 0;

�t;s = �t;s+1r(et;s) + 

t;s
DhE(xt; u; ht;s); s = jmax � 1; :::; 1; t = k � 1; :::; 0;

�
t
= pt

t
Ft(xt; u) + �t+1;1R(et+1); t = k � 2; :::; 0;

�t = �t+1;1DeR(et+1); t = k � 2; :::; 0:

(57)

If jt denotes, as before, the index corresponding to the accepted error and steplength,

we note that:

1[0;"](s) (et;1; :::; et;s) = 0; for s 6= jt;

and this implies 

t;s

= �t;s = 0; for all t and all s � jt + 1: For this reason, the

number jmax can be changed by jt in all the expressions of (57), and the characteristic

functions won't appear. Then, (57) takes the form:

�k�1 = 0;

�
k�1 = pt

k
Fk�1(xk�1; u);



t;jt

= �t ; t = k � 1; :::; 0;

�t;jt = 

t;jt
DhE(xt; u; ht;jt) + �

t
; t = k � 1; :::; 0;



t;s

= �t;s+1Der(et;s)ht;s; s = jt � 1; :::; 1; t = k � 1; :::; 0;

�t;s = �t;s+1r(et;s) + 

t;s
DhE(xt; u; ht;s); s = jt � 1; :::; 1; t = k � 1; :::; 0;

�
t
= pt

t
Ft(xt; u) + �t+1;1R(et+1); t = k � 2; :::; 0;

�t = �t+1;1DeR(et+1); t = k � 2; :::; 0:

(58)

Finally, the Lagrangian function derivative, with respect to u; gives the adjoint

gradient formula:

rJh;k(u) =
kP
i=0

Du�i(xi; u)�
k�1P
i=0

pt
i+1hiDuFi (xi; u)� pt0Dul(u)�

��0;1DuQ(x0; u)�
k�1P
i=0

jiP
j=1



i;j
DuE(xi; u; hi;j):

(59)

Remark 3. If the function Q does not depend on u; and the functions R and r have

derivatives DuR;Dur equal to zero then, DuQ = 0; and 

i;j

= 0; for all i; j: Then, the

formula for the gradient rJh;k(u) of the model with automatic steplength selection is

identical to the formula for the gradient rJk(u) of the model with �xed steplengths.

The only di�erence is that in the later case we know the steplengths before the inte-

gration and in the former case after the integration. The assumptions for Q;R and

r are not so strongs as they look like. Frequently, piecewise constant functions R,

r and a constant function Q are used. A constant Q means that a �xed step, say

h0;1 = 10�2; is always taken at the beginning,. Piecewise constant r or R means that

the factors for step changing remain constant when the local error estimate lies in

certain �xed intervals.
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We collect all the above results in the following:

Theorem 3: Let be the continuous parameter estimation problem (1). Then, under

"always succesful assumption", the problem (55) can be considered the discrete model

we obtained if the integration is accomplished using an automatic steplength selection

and a multi-step scheme. Furthermore, the gradient (adjoint form) of Jh;k(u) is given

by (59), where the multipliers are the solution of the adjoint system (56),(58). In

addition, if Q does not depend on u and if R; r are piecewise constant functions, then

rJh;k(u) is equal to rJk(u); for all u 2 <
m:

Remark 4. It is also possible to increase the model with an usual order selection

policy, i.e. adding order selection equations like:

Qi;s = s

jmaxX
j=0

1[0;"](j)
�
es
i;1; :::; e

s

i;j

�
;

Qi+1 = min

�
min
Qi;s>0

Qi;s; Qmax � 1

�
;

where the local error estimation es
i;j

at step i; would depend not only on the steplength

hij ; but also on the order s: But this is irrelevant, since the derivatives of Qi;s with

respect to x and u are zero and the formula for the gradient remains unchanged.

2.5 Hessian for continuous and discrete models

If we assume that '
i
; f; g and l are continuous and twice continuously di�erentiable

with respect to (x; u), then J; Jk and Jh;k are also twice continuously di�erentiable

and it is only a matter of (tedious) calculus the computation of the Hessian functions

r
2J(u);r2Jk(u);r

2Jh;k(u); following the algorithms given in Lemma 1.

For example, the model for the continuous gradient rJ(u) (using sensitivity form)

is given by:

rJ(u) =

sX
i=1

[Dx�i(x(� i); u)M(� i) +Du�i(x(� i); u)] ;

where:
_x(t) = f (x(t); u; t) ; t 2 [0; T ];

x(0) = l(u);
_M(t) = fx(x(t); u; t)M(t) + fu(x(t); u; t); t 2 [0; T ];

M(0) = Dul(u):
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A direct computation gives the sensitivity form of the continuous Hessian:

r
2J(u) =

sP
i=1

�
Mt(� i)D

2
xx
�i(x(� i); u)M(� i) +Dx�i(x(� i); u)M(� i)+

+2D2
ux
�i(x(� i); u)M(� i) +D2

uu
�i(x(� i); u)

�
;

whereM(t) = Dux(t) is the n�m�matrix, solution of the original sensitivity system,

and M(t) = DuM(t) is a n � m � m�tensor, solution of the following additional

sensitivity system:

dM(t)

dt
= Mt(t)fxx(x(t); u; t)M(t) + fx(x(t); u; t)M(t)+

+2fux(x(t); u; t)M(t) + fuu(x(t); u; t); t 2 [0; T ];

M(0) = D2
uu
l(u):

As another example, we write the model for the discrete gradient rJk(u) (using

sensitivity form):

rJk(�u) =

kX
i=0

[Dx�i(xi; u)Mi +Du�i(xi; u)]

where:

xi+1 = xi + hiFi (xi; u) ; i = 0; 1; 2; :::; k � 1;

x0 = l(u);

Mi+1 =Mi + hi

"
QiP
j=1

Dxi�j+1
Fi(�xi; �u)Mi�j+1 +DuFi(�xi; �u)

#
; i = 0; 1; :::; k � 1;

M0 = Dul(u); Qi = min fi+ 1; Qmax � 1g :

Then, the Lagrangian is written as follows:

L(x;M;u) =
P

k

i=0 [Dx�i(xi; u)Mi +Du�i(xi; u)] +

+
P
k�1

i=0 [xi+1 � xi � hiFi (xi; u)]
t

Mi+1 + [x0 � l(u)]
t

M0+

+
P
k�1

i=0 �
t

i+1

"
Mi+1 �Mi � hi

 
QiP
j=1

Dxi�j+1
Fi(�xi; �u)Mi�j+1 +DuFi(�xi; �u)

!#
+

+�t0 [M0 �Dul(u)] ;

where x = (x0; :::; xk) and M = (M0; :::;Mk) enter as state variables and Mi; �i are

adjoint n�m�matrices and n�vectors respectively.

Following the same routine, we compute derivatives with respect to each one of

the state variables, equate them to zero and, after convenient rearrangements, we
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obtain the following adjoint system:

�t
k
= �Dx�k(xk ; u);

�t
i
= �t

i+1 +

~QiP
j=i

hj�
t

j+1Dxi
Fj(�xj ; u)�Dx�i(xi; u); i = 0; k � 1;

Mk = �D2
xx
�k(xk ; u)Mk �D2

ux
�k(xk ; u);

Mi =Mi+1 +
k�1P
j=i

hjDxi
Fj(�xj ; u)Mj+1+

+
k�1P
r=i

" 
~QrP
j=r

�t
j+1hjD

2
xjxi

Fj(�xj ; u)

!
Mr + �t

r+1hrD
2
uxi
Fr(�xr ; u)

#
�

�D2
xx
�i(xi; u)Mi �D2

ux
�i(xi; u);

where ~Qi = min fi+Qmax � 1; kg :

The derivative of L with respect to u gives the following adjoint form for the

discrete Hessian:

r
2Jk(u) =

P
k

i=0

�
D2
xu
�i(xi; u)Mi +D2

uu
�i(xi; u)

�
�

�
k�1P
i=0

hiDuF
t

i
(�xi; u)Mi+1 �Dul

t(u)M0 � �t0Duul(u)�

�
k�1P
r=0

" 
~QrP
j=r

�t
j+1hjD

2
xju

Fj(�xj ; u)

!
Mr + �t

r+1hrD
2
uu
F (�xr; u)

#
:

3 Conclusions

In the present paper we stated and proved some fundamental results related with

inverse problems in ODE modelling which we resume as follows:

1) We proposed some kind of "direct approach " for the solution of the inverse

problem, substituting the ordinary di�erential equation by a di�erence scheme. This

is a general approach and can be used as well for other dynamical model,

2) We strongly recommended to use exact formulas for the gradients of the discrete

approximation schemes instead of using a �nite di�erence approach. For this reason

we gave also a general method for their calculation,

3) We developed complete proofs of the gradient formulas for the continuous in-

verse problem and for several of its discrete approximations, using explicit and implicit

multistep schemes.

4) As far as we know, the model and results developed for the case of integration

by automatic steplength control are completely new. We also included some formulas

for the Hessian matrices.
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