
Server Reintegration in a Replicated UNIX

File System

Marcia Pasin Taisy Silva Weber

Universidade Federal do Rio Grande do Sul

Instituto de Informtica

PPGC - Programa de Ps-Graduao em Computao

Caixa Postal 15064 CEP 91501-970 Brazil

fpasin, taisyg@inf.ufrgs.br

Abstract

A distributed system is a collection of nodes connected by a network, an ideal platform to

provide high reliable computing due to the redundancy supplied by a great number of nodes.

Node faults and network connection faults can be masked recon�guring the system. How-

ever, sequential faults, that a�ect multiple nodes can decrease the performance of the system

a�ecting the system reliability and availability. To avoid this, failed nodes should be reinte-

grated as soon as possible. This paper details the problem of reintegration of failed nodes in

a replicated UNIX �le system. We built a prototype with the recovery protocols required by

the reintegration procedure.

Keywords: distributed systems, �le replication, reintegration of failed server, UNIX sys-

tems.

1 Introduction

Distributed systems are composed of nodes connected by a high-speed network. At

these nodes, we can found server processes that o�er services to the other processes

called clients. Servers provide the clients �le service. The client sends to the

server a request message asking for some service (e.g. read a block of a �le). The

server process does the work and returns the result or an error code to the client.

The �les can be replicated at di�erent servers to provide a fault tolerant and to

improve performance by supporting parallel reads on di�erent replicas. It composes

a distributed replicated system. If a node with a server process fails, there is another

to replace it.

71



72 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

A problem rises when occur sequential faults in nodes with server processes.

Sequential faults not only decrease the performance, but also a�ect the system

availability. Failed servers must rejoin the system as soon as possible after repair

to maintain the desired availability. Generally, a server reintegration is a manual

task, but it leads to operation errors and unacceptable delays. Automatic techniques

could provide fast and robust reintegration assuring the required system availability.

The server reintegration:

a) maintains the full activity of the system correcting degradation generated by

failures;

b) maintains the number of servers of the original system con�guration and

c) increases the availability of information supplied to the clients, with the

addition of a new server.

Reintegration doesn't just involve the recognition of new server in the network,

but also the state update of the new server. That state depends on the environment

and on the supplied service. The state update involves the �le transference from an

up-to-date server to the new server. This paper details the automatic reintegration

of servers and discusses two update state protocols. The �le replication approach

can be used with primary site [1] or active replication [2] as will be shown. We are

considering a replicated UNIX �le system [3, 4].

The remaining of the paper is structured as follows: the section 2 introduces the

�le replication approaches used in distributed computing and masking failures; the

section 3 describes the distributed replicated system model. The section 4 describes

the up-to-date protocols. The section 5 describes the client service and the server

reintegration concurrently. The section 6 shows the recovery protocols used by the

reintegration procedure. The section 7 shows some results. Finally, the section 8

�nishes the paper with our concluding remarks.

2 File replication approaches to masking failures

File replication disseminates �le replicas among special nodes with server pro-

cesses. If one replica is accidentally lost, there is other to replace it. The client

processes can read and write this �le replica accessing a server process. They use

message passing protocols. If a client wants to read a �le at a server, it sends to the

server a message with the identi�cation to the desired �le. The server does the work

and returns the result to the client using another message. The client does not know

anything about �le replicas: the replication is fully transparent. The client only

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 73

knows the �le name and asks the server about the �le. It just makes the request to

the desired �le and waits for the result.

The servers that have the same �le replicas compose a replication group. When

a server in the replication group crashes, the other operational servers must ensure

the integrity of the �les continuing the service to the clients. A special approach is

required to management the distributed replicas in the group and to provide failure

transparency. It can be done by primary site [1] and active replication [2] protocols.

These approaches have been used in a variety of systems [3, 4 and 5]. The primary

site approach uses a server called primary site and backup servers. The primary site

manages the principal replica. A client only knows who is the primary site because

the �le replicas are transparent. When the primary receives a write message from

the client, it disseminates to the backups the invocation before that it returns the

response to the client. If the client sends to the primary a read message, it reads the

required �le and returns the client the response.

The active replication approach gives all replicas the same hole without the

centralized control of the primary site. When the client sends to any server a write

message, all replicas receive the message. Each replica does the work and returns the

result or an error code to the client. The client waits until it receives the �rst result

or the majority of identical results. If the operation is a read, it makes a similar

operation.

Active replication and primary site approaches require non-crashed replicas

receive the client message in the same order. They require a communication

primitive that satis�es the proprieties [6] below:

a) order: all the �le replicas must process di�erent write messages from concurrent

clients at the same order;

b) atomicity: all the �le replicas must process a write message or no one can do

it. If the write message can not be processed, the write operation is aborted.

However, the atomicity propriety can be relaxed to implement resiliency: if a

replica crashes and does not process the write message, it will leave the replication

group. The operation can be completed successfully even if some failures occur in

the system. That is, the operation must be resilient to failures.

When a failure is detected, the failed server must be isolated, repaired and

reintegrated into the group to not decrease the system reliability and availability. At

this paper, only server failures are handled. Server failures are a lot more disruptive

and disturb the system service.

c
 Investigaci�on Operativa 2000



74 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

There are two types of failures that need to be handled by a fault-tolerant system:

node failures and communication failures. Node failures cause replica on that node

to become inaccessible. The node stops its processing or crashes. A communication

failure is a lot more disruptive and can lead to network partitioning. In this, nodes and

links fail in a manner such that the remaining nodes are partitioned into sub-groups.

Nodes in each sub-group can communicate with each other, but can not communicate

with nodes of the other sub-groups.

3 The distributed replicated system

We assumed the system normal operation state (�g. 1) when the system is free of

faults. When a faulty server is detected (for example by timeout), the failed server

must be isolated, and its service is no more available. The system lost a server and

needs mechanisms to recover the service, recon�guring the replication group. The

replication group could request the system administrator to replace or repair the lost

server.

After system recovery and group recon�guration, the system works degraded,

because the fault tolerance capacity was reduced. The system lost a server. A robust

system supports a determinate number of sequential faults before collapse. This

number is associated with the number of �le replicas in the replication group.

Operation
Normal

System

Crash
Colapse

System
Excess of Failed

Servers

Replication Group
Still Does The Service

and Group
System Recovery

Reconfigurartion

Server Reintegration

Fig. 1: Reliable replicated system procedures

The system must provide reintegration of failed servers to increase or maintain

fault tolerance and performance. It can be done using server reintegration at the

system normal operation state. The server reintegration begins when a new or

repaired server restarts and returns to the network. Reintegration means server

�les recovery and server join into the replication group. The new server sends to

the replication group messages to get the up-to-date �le version and to recover its

replicas. When the recovery terminates, the group is noti�ed that the server is

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 75

recovered and can participate as an active group member.

A server can be a member of more than one replication group, that means, a server

can maintain �le replicas of di�erent replication groups. When such server must be

reintegrated, the server must rejoin all the replication groups where it was a member.

The reintegration in more than one group can be done concurrently.

4 Server reintegration and up-to-date protocols

Some replicated UNIX systems [3, 4, 5, 7] try to provide high reliability and

availability maintaining the NFS (Network File System) [8] conventional semantic.

However, systems as HA-NFS (High Availability NFS) [4] and the Harp [5] do not

provide mechanisms to reintegrate repaired servers. In these systems, maintaining

the number of servers in a replication group is a manual task, executed by system

operator. Automatic reintegration is rarely provided or documented. An exception

is the RNFS (Reliable NFS) [3].

In the RNFS, the automatic reintegration of failed server starts when the server is

repaired and sends to the replication group a message requiring a join. The primary

site in the group answers the invocation and starts the recovery protocol. The

repaired server must collect information of the replication group to recover its �les.

When the recovery process terminates, the replication group must be noti�ed. We

developed two server recovery protocols for the RNFS: volume recovery di�erential

recovery. These protocols are detailed at this paper.

In the volume recovery, the primary site starts a task that recursively spans the

local image of the �le volume under recovery. This volume contains all replication

group �les, which the new server asks to rejoin. All �les and directories of this

volume on the primary site are transferred to the new server. If the new server

contains �les of that replication volume that no longer exists on the primary site,

these �les are deleted. The result of this operation is a complete image transfer of

the entire �le volume. If the recovery process fails for any reason, it is stopped and

the recovery will start again.

The di�erential recovery is more restrict than the volume recovery. When a server

restarts after a failure, version numbers at all �les will signalize at least the last com-

pleted operation on this �les. During the recovery procedure, �le version numbers are

checked between the primary site and the new server in the group. Only �les with dif-

ferent version numbers are copied. The wrapping of counters is handled by de�ning a

maximal possible version number. This number also means an invalid version number.

When �le versions reach the maximum version number, version updating is stopped.

During the next recovery round, all �les having invalid version number will always

be transferred, and the version numbers will return to zero on all connected copies.

c
 Investigaci�on Operativa 2000



76 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

The di�erential recovery is used when the failed server was just a short interval of

time out of operation and the number of �le updates in this period was not signi�cant.

Recovery protocols can be used concurrently in the repaired server during

reintegration to di�erent replication groups (�g. 2). The server runs a process

executing one of the protocols to each replication group that it wants to rejoin. To

some groups could be interesting to transfer the complete replication volumes, to

other to use the di�erential recovery protocol.

A Replication Group Many Replication Groups
This Server Belongs to

Fig. 2: Many replication groups can reintegrate a server concurrently

A performance function, that considers the number of �les in the replication vol-

ume, the time elapsed from server failure to reintegration and the �le update load of

the group, decides the best strategy to each replication group.

5 Reintegration of server and the client service

While the replication group reintegrates the new server, the clients continue to

ask services. In a high availability system, the replication group must be able to

attend the client service and allow the reintegration of a server. The new server

works like a client asking the replication group for many services.

The more straightforward solution to recovery a server, disables completely the

service to the clients. It is not e�cient because it decreases the system availability. A

more e�cient solution disables the write operations to the replication group �les while

the recovery does not terminate. This solution also decreases the system availability

concerning update requests from the clients, but it continues to provide read service.

The third solution locks write operations at the replication group and release the

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 77

locks gradually. When the reintegration starts, all �les of the group are locked to

write operations. As �les are restored in the new server, the locks are released. Thus,

when a �le is locked, it means that the recovery protocol did not yet transfer the �le.

When the lock is released, all replicas of that �le can accept update requests in all

servers of the group, including in the new server.

6 Recovery protocols

A prototype for the suggested recovery protocol was implemented using a toolkit

called rpcgen [9], witch allows to build distributed application using RPC (Remote

Procedure Call) [10].

Client Program

Interface

Replication Group

Selected Server

New Server

Server Program

Interface

Join

Fig. 3: Server recovery in a distributed system

First, we wrote an interface to be compiled by the rpcgen, a program with the

server procedures to the new server and a program with client procedures to a

selected server (�g. 3). The interface is used to do the communication between the

server and client programs. A conventional C program language compiler generates

the executable code and links them with a interface. The generated codes are

executed in a UNIX environment, which can be SunOS or Linux. We assumed a

distributed system with point-to-point reliable communication.

Our prototype implements the volume recover and the di�erential recovery. The

volume recovery uses only the RPCs available at the conventional NFS. To implement

the di�erential recovery protocol it was necessary to include a version �le in each

server (primary and backups) and a new RPC in the �le system to manipulate this

information.

The version �le contains the �le name and a version number associated to each

�le name. Before recovering a �le in the new server, the �le version number of this

c
 Investigaci�on Operativa 2000



78 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

�le at the primary site is checked. If the �le version in the primary site is greater

than the �le version in the new server, then the �le is replaced with the primary

version. If both �le versions are equal, then both �les are assumed to be equal and

the �le at the new server do not need be replaced.

The prototype implements the volume recovery protocol and the di�erential

recovery protocol. The volume recovery uses only the RPCs available at the

conventional NFS (�g. 4).

volume recovery (server.name, client.name) f
fetch the file attributes - stat

if file type is directory f
create directory - MKDIR RPC

open directory - opendir

read file of directory - readdir

while exist files in directory f
volume recovery (server.name, client.name)

read a file in directory - readdir

g
close directory - closedir

g else f
open file - open

read data of file - read

while exist data f
read data of file - read

g
close file - close

write a file - RPC CREATE

g
g

Figure 4 - Volume recovery executed by client program (selected server)

We included a version �le in both servers (new and selected) and a new RPC

to manipulate this information to implement the di�erential recovery protocol (�g. 5).

differential recovery (server.name, client.name) f
fetch the file attributes - stat

if file type is directory f
create a directory - MKDIR RPC

open directory - opendir

read a line of directory - readdir

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 79

while exist files in directory f
differential recovery (server.name, client.name)

read file of directory - readdir

g
close directory - closedir

g else f
return version (client.name)

return version (server.name) - new RPC

if server.version < client.version f
open file - open

read data of file - read

while exist data f
read data of file - read

g
close file - close

write the file - RPC WRITE

g
g

g

Figure 5 - Di�erential recovery executed by client program (selected server)

A group-synchronized clock could be used to avoid the additional RPC. It ma-

nipulates the �le version number. In this solution, the time given by the global clock

for each �le update can be used as version number. This information can be found in

the �le inode [8]. Unfortunately, distributed systems with global synchronized clocks

provided through clocks synchronization algorithms are not frequently found in real

world.

The volume recovery and the di�erential recovery protocols proposed to an envi-

ronment with primary site also can be used with active replication. An appropriate

server must be selected in the active replication group. This server will be work like a

primary site, recovering a failed backup server. In the active replication approach all

servers in the replication group coordinate their activities to service the clients and

no one acts as a primary during the normal operation and any one of them can act

as a primary during the server reintegration.

7 Results

The recovery protocols use the RPCs of the conventional NFS, and a new RPC to

return the �le version using in the di�erential recovery protocol. We executed some

tests with the prototype to verify our protocols. We are using a small data base. The

table (�g. 6) built after the prototype execution shows that, to the same �le system,

c
 Investigaci�on Operativa 2000



80 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

the di�erential recovery protocol is more e�cient than the volume recovery protocol.

Total File Number Volume Recovery Di�erential Recovery

no one 6.78 sec 3.86 sec

1/2 �les 7.92 sec 6.90 sec

all �les 7.20 sec 10.46 sec

Figure 6 - Volume recovery protocol versus di�erential recovery protocol

An exception occurs when the server needs to recover all �les at the volume or

most of them. In this case, the time computed by the di�erential recovery includes

the volume recovery and all the comparisons needed to verify that the whole volume

is out-of-date. The graphic values are omitted because we make a quality comparison.

We are not interested in values because we are executing just a prototype to validate

our algorithms (volume recovery and di�erential recovery).

8 Conclusions

A prototype was implemented to analyze the automatic reintegration of failed

server in a UNIX replicated �le system. The protocols use the RPCs of the

conventional NFS, and a new RPC to return the �le version using in the di�erential

recovery protocol. If the system supports a group synchronization algorithm, a

solution could be easily implemented to eliminate this additional RPC and overcome

the disadvantage of incompatibility with the NFS. The problem of this solution is

the overhead make by the clock synchronization algorithm.

The prototype shows that, to the same �le system, the di�erential recovery

protocol is more e�cient than the volume recovery protocol, except when the server

needs to recover all �les or most of them. In this case, the time computed by

the di�erential recovery protocol includes the volume recovery protocol and all the

necessary comparisons to verify that the whole volume is out-of-date.

Now we are porting the recovery protocols to an environment with support to

group communication primitives [11]. We intend implement the server reintegration

and a replication approach to keep the consistent replicas to this environment using

these primitives. The recovery protocols also can be used in a migration system [12]

to do the state transference.

References

[1] Budhiraja, N.; Marzullo, K.; Schneider, F. B.; Toueg, S. The primary-backup

approach. In: Mullender, Sape (Ed.). Distributed Systems. 2 ed. New York:

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 81

ACM Press, 1993. p.199-216.

[2] Schneider, F. B. Replication management using the state machine approach.

In: Mullender, Sape (Ed.). Distributed Systems. 2. ed., NewYork: ACM Press,

1993. p. 169-198.

[3] Leboute, M.; Weber, T. S. A reliable distributed �le system for UNIX based

on NFS, In: Proceedings of the IFIP International Workshop on Dependable

Computing and its Applications. DCIA 98, Johannesburg, South Africa, January

12-14, 1998. p. 158-168.

[4] Bhide, A.; Elnozahy, E. N.; Morgan, S. P. A highly available network �le server.

Proceedings of the USENIX, 1991. p.199-205.

[5] Liskov, Barbara et al. A Replicated UNIX File System. Operating Systems

Review, New York, v.25, n.1, p.60-64, Jan. 1991.

[6] Guerraoui, Rachid, Schiper, Andr. Software-based replication for fault tolerance.

Computer, p.68-74, Apr. 1997.

[7] Siegel, A.; Birman, K.; Marzullo, K. Deceit: a 
exible distributed �le system.

Tech. Rep. 89-1042, Department of Computer Science, Cornell University, 1989.

[8] Sandberg, R.; Goldemberg, D.; Kleiman, S.; Walsh, D.; Lyon, B. Design and

implementation of the Sun Network File System. Proceedings of the Summer

USENIX Conference, 1985. p.119-130.

[9] Birrell, A. D.; Nelson, B. J. Implementing remote procedure calls. ACM

Transactions on Computer Systems, No. 2, pp.39-59. 1984.

[10] Corbin, J. R. The art of distributed applications: programming techniques for

remote procedure calls. Sun Technical Reference Library, Sun Microsystems,

1991. 321p.

[11] Hayden, Mark G. The Ensemble System. A dissertation presented to the Faculty

of the Graduate School of Cornell University, Jan. 1998.

c
 Investigaci�on Operativa 2000



82 Pasin, M. and Weber, T. S. � Server Reintegration in a Replicated ...

[12] Pasin, M.; Weber, T.S.; Jatene, B.; Geiss, L. Super-Amigos: um sistema tolerante

a falhas para migrao de objetos em sistemas distribudos. Memorias CLEI, 1999.

Asuncion, Paraguay.

c
 Investigaci�on Operativa 2000


