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Abstract

We present a review of the classical proximal point method for �nding zeroes of maximal

monotone operators, and its application to augmented Lagrangian methods, including a rather

complete convergence analysis. Next we discuss the generalized proximal point methods, ei-

ther with Bregman distances or �-divergences, which in turn give raise to a family of gener-

alized augmented Lagrangians, as smooth in the primal variables as the data functions are.

We give a sketch of the convergence analysis for the case of the proximal point method with

Bregman distances for variational inequality problems. The di�culty with these generalized

augmented Lagrangians lies in establishing optimality of the cluster points of the primal se-

quence, which is rather immediate in the classical case. In connection with this issue we

present two results. First we prove optimality of such cluster points under a strict comple-

mentarity assumption (basically that no tight constraint is redundant at any solution). In

the absence of this assumption, we establish an ergodic convergence result, namely optimality

of the cluster points of a sequence of weighted averages of the primal sequence given by the

method, improving over weaker ergodic results previously known. Finally we discuss similar

ergodic results for the augmented Lagrangian method with �-divergences and give the explicit

formulae of generalized augmented Lagrangian methods for di�erent choices of the Bregman

distances and the �-divergences.

1 Introduction

The proximal point method can be seen as a procedure to solve convex optimization

problems, or more generally monotone variational inequality problems. It replaces the

original problem by a sequence of more regular subproblems. When applied to the

dual of a convex optimization problem, it becomes equivalent to the augmented La-

grangian method. One feature of the proximal point method is that the subproblems
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are structurally similar to the original problem, e.g. the subproblems are constrained

when the original problem is constrained. Recently, the proximal point method has

been generalized by changing the regularization term so that it plays also a penal-

ization role, making the subproblems unconstrained. The regularization/penalization

terms of these new methods are based on generalized distances (e.g. Bregman dis-

tances or �-divergences) which replace the Euclidean distance and force the solution

of the subproblems to remain in the interior of the feasible set. These generalized

proximal point methods, when applied to the dual of a convex optimization problem,

give raise in turn to generalized augmented Lagrangian methods. The most signi�cant

di�erence between these and the classical augmented Lagrangian method is that the

objective of the subproblems becomes as smooth as the data function, while in the

classical method the objective of the subproblems is di�erentiable but never twice dif-

ferentiable. On the other hand, the issue of convergence of the sequence of minimizers

of the subproblems is much more complex for the new methods than for the classical

one. This work reviews both the classical proximal point method and the classical

augmented Lagrangian method, including a fairly complete convergence analysis for

both. Then it introduces the generalized proximal point and augmented Lagrangian

methods, sketching their convergence analysis, and presenting new convergence re-

sults for the primal sequence generated for the proximal point method with Bregman

distances, which are stronger than those previously known. We also present a version

of the method which is applied not to the dual of the original convex optimization

problem, but to the saddle point problem of the Lagrangian, seen as a variational

inequality problem. This variant has better convergence properties than the general-

ized augmented Lagrangian methods originated in the application of the generalized

proximal point method to the dual of the original problem. For instance, the sequence

of primal iterates is authomatically bounded.

The work is organized as follows: in Section 2 we review the classical augmented

Lagrangianmethod, tracing back its origin to \tatônnement" methods for partial equi-

librium problems. In Section 3 we present the classical proximal point method for

�nding zeroes of point-to-set maximal monotone operators and prove its convergence.

In Section 4 we establish the relation between the classical proximal point method

applied to the dual of a convex optimization problem and the classical augmented La-

grangian method, and establish the convergence properties of the latter based on the

results in Section 3 for the former. Sections 5, 6 and 7 introduce the concepts of Breg-

man distance, �-divergence and variational inequality problem respectively. Section

8 presents the proximal point method with Bregman distances, which, applied either

to the dual of the original problem or to the saddle point problem for its Lagrangian,

genarates two generalized augmented Lagrangian methods. The connection between

these methods is established in Section 9, and the convergence analysis for the dual

sequences they generate is presented in Section 10. The generalized proximal point

and augmented Lagrangian method with �-divergences are discussed in Section 11,

where their convergence properties are commented upon but not proved. Section 12

contains some new results, related to the sequence of primal iterates generated by the

two generalized augmented Lagrangian methods with Bregman distances: �rst we in-

troduce a strict complementarity assumption, which basically says that no constraint,
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which is tight at a solution of the problem, is redundant, and under this assumption

we prove optimality of the cluster points of the primal sequence (if any) for the �rst

method, and convergence of the full primal-dual sequence to an optimal primal-dual

pair for the second one. In the absence of this strict complementarity assumption, we

present some ergodic convergence results for the primal sequence generated by both

methods. These results refer to the cluster points of a sequence of weighted averages

of the iterates of such primal sequences, which are proved to be primal optimal so-

lutions. Di�erently from previous results of the same nature, we make no additional

assumptions on the behavior of the sequences. Section 13 contains the explicit iter-

ative formulae of the generalized augmented Lagrangian methods for several choices

of the Bregman distance and the �-divergence.

2 Classical Augmented Lagrangians

Possibly, the motivation behind augmented Lagrangian methods can be traced back

to the �rst equilibrium models proposed by L�eon Walras in the 1890's, which in

turn were among the �rst attempts to introduce mathematical analysis in economics.

Dressed in modern garments, Walras' approach could be formulated in the following

way. Consumers (aggregated into just one for the sake of simplicity) have to acquire a

quantity xj of the j-th good (1 � j � n), so as to maximize their utility u(x), subject

to the constraint that their disposable income is r. In other words, given the price �j
of the j-th good, they must solve the problem

maxu(x) (1)

s.t. �tx = r; (2)

x � 0: (3)

On the other hand, producers (also aggregated into one) face costs c(y) in order

to produce quantities yj of each good (1 � j � n), and would like to maximize their

returns, i.e., given prices �j , their problem is

max�ty � c(y) (4)

s.t. y � 0:

The system is in equilibrium when x, y and � are such that both optimization

problems are simultaneously solved, subject to the market clearing equation, which

in this case takes the particularly simple form

x = y: (5)

Walras assumed that in real life, consumers solve their problem (1){(3) given

prices �, and so they determine the quantities x = y, in view of (5). Now given y,
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producers �x certain new prices �0 (possibly increasing �j if yj is big and decreasing it

otherwise), so as to improve the value of their objective in (4). Next consumers modify

their consumption basket, given �0, solving (1){(3) with the new prices, and opt to

consume x0 instead of x. Producers then modify �0 to �00, and the process continues

until (hopefully) an equilibrium is attained. Walras called this process \tatônnement".

To decide whether this process indeed works in real life or not is beyond the author's

humble economical knowledge; rather we are interested in this kind of process as a

way to solve the equilibrium problem, and furthermore optimization problems. It is

clear that, assuming continuous di�erentiability of u and c, the �rst order optimality

conditions for the problems above, plus the market clearing equation, produce the

following system in x, y, � and !:

�ru(x) + !� � 0; (6)

x � 0; (7)

�tx = r; (8)

xt[�ru(x) + !�] = 0; (9)

rc(y)� � � 0; (10)

y � 0; (11)

yt[rc(y)� �] = 0; (12)

x = y; (13)

where ! is the multiplier for the budget constraint (2).

The connection with optimization comes from a well known theorem by Samuelson

([45]), which ensures that the problem above can be cast as an optimization problem

in the following way: let us call x(�) the solution x of problem (1){(3) as a function

of �, and let �(x) be the inverse function. De�ne U : Rn � R
n ! R as

U(x; y) = �c(y) +
Z x

x0

�(�)d�:

and consider the optimization problem

maxU(x; y) (14)

s.t. x � 0; y � 0; x = y: (15)
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Samuelson's theorem states that the equilibrium problem (6){(13) and the optimiza-

tion problem (14){(15) are equivalent, in the sense that the �rst order conditions of

(14){(15) are equivalent to (6){(13). As a consequence, both problems are indeed

equivalent if u is concave and c is convex. For this very simple case, Samuelson's

result is a matter of almost trivial veri�cation.

We mention, parenthetically, that there is some redundancy above due to the too

simple form of the market clearing equation: it's more realistic to assume that pro-

ducers have di�erent options in order to produce the �nal goods x, in which case y

belongs to Rm (m > n), giving raise to an input-output matrix B 2 R
n�m . In such

a case, By = x substitutes for x = y in (5), (13) and (15) and everything is slightly

less trivial. In fact, Samuelson's result covers equilibrium models considerably more

involved than this one.

Whether the problem is formulated as an equilibrium one or an optimization one,

the idea of alternatingly adjusting quantities (solving an optimization problem given

prices) and then prices (so that the \dual" objective increases; see (19) below), proved

to be quite e�cient to solve this type of equilibrium problems, and \tatônnement"

methods are still being proposed, analyzed and used to solve real-life equilibrium

problems (see e.g. [27]).

Here we will study a particular form of \tatônnement", namely augmented La-

grangian methods for convex optimization. Before introducing this family of methods

we introduce some notation and basic convex optimization results.

From now on R
p
+ = fz 2 R

p : z` � 0 (1 � ` � p)g, Rp++ = fz 2 R
p : z` > 0 (1 �

` � p)g, h�; �i and k�k denote the Euclidean inner product and norm respectively.

For C � R
p , int(C) denotes the interior of C, e` is the `-th vector in the canonical

basis of Rp and r and @ indicate the gradient and subdi�erential of a convex function.

More precisely, for a convex ' : Rp ! R [ f1g, the subdi�erential of ' at z is

de�ned as @'(z) = f� 2 Rp : h�; z0 � zi � '(z0)�'(z) for all z0 2 Rpg. The elements

of @'(z) are said to be subgradients of ' at z.

We deal with the convex optimization problem (P ) de�ned as

min f0(x)

s.t. fi(x) � 0 (1 � i � m); (16)

where fi : R
n ! R is convex and �nite valued for 0 � i � m. Note that the e�ective

domain of the fi's (0 � i � m) is Rn and so they are continuous on Rn (e.g. [19],

Vol. I, p. 175). The Lagrangian associated with (P ) is L : Rn � R
m ! R de�ned as

L(x; y) = f0(x) +

mX
i=1

yifi(x); (17)
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and the dual problem associated with (P ) is the convex optimization problem (D)

given by

min� (y)

s.t. y � 0; (18)

with  : Rm ! R [ f�1g de�ned as

 (y) = inf
x2Rn

L(x; y): (19)

The set of solutions of (P ) and(D) will be denoted as S�P and S�D respectively,

and S�P � S�D � R
n � R

m will be called S�. We assume that some basic constraint

quali�cation condition holds (e.g. the condition in [19], Vol. I, p. 307), so that S�

consists of the set of pairs (x; y) which satisfy the Karush-Kuhn-Tucker conditions for

(P ) (see [19], Vol. I, p. 305), namely

0 2 @f0(x) +
mX
i=1

yi@fi(x); (20)

y � 0; (21)

yifi(x) = 0 (1 � i � m); (22)

fi(x) � 0 (1 � i � m): (23)

It is easy to check that S� coincides with the set of saddle points of L, i.e. (x�; y�)
belongs to S� if and only if

L(x�; y) � L(x�; y�) � L(x; y�);

for all x 2 Rn and all y 2 Rm+ .

We comment that we have included the case of nonsmooth fi's for the sake of

wider generality, though this will cause some technical problems. Readers unfamiliar

with nonsmooth convex analysis should replace @fi by rfi in all cases, and disregard

speci�c nonsmooth discussions. For instance, in the smooth case no constraint quali-

�cation like the one mentioned above is required.

Following the \tatônnement" spirit, it seems reasonable to try a Lagrangianmethod

consisting of, given a dual vector yk � 0, determining xk+1 as a minimizer of

L(�; yk), and then using somehow xk+1 in order to compute some yk+1 � 0 such that

 (yk+1) >  (yk). The problem lies in the nonnegativity constraints in (18). In other

words, the Lagrangian, in order to be convex in x, must be de�ned as �1 when y is

not nonnegative, i.e. it is not smooth in y at the boundary of Rm+ . As a consequence,
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a minimizer xk+1 of L(�; yk) does not provide in an easy way an increase direction for

 . The solution consists of augmenting the Lagrangian, de�ning it over the whole Rm ,

while keeping it convex in x. This augmentation, as we will see, will easily provide an

increase direction for  , and even more, an appropriate closed formula for updating

the sequence fykg. The price to be paid will be the loss of second di�erentiability of

the augmented Lagrangian in x, even when the problem data (i.e. the functions fi's

(0 � i � m)) are as smooth as desired. Also, it is totally harmless and indeed con-

venient, to add a positive parameter multiplying the summation in the de�nition of L.

We de�ne then the augmented Lagrangian L : Rn � R
m � R++ ! R as

L(x; y; �) = f0(x) + �

mX
i=1

��
maxf0; yi + (2�)�1fi(x)g

�2

� y2i

�
: (24)

Now we can formally introduce the augmented Lagrangian method (AL from now

on) for problems (P ) and (D).

AL generates a sequence f(xk; yk)g � R
n � R

m , starting from any y0 2 R
m ,

through the following iterative formulae:

xk+1 2 argminx2RnL(x; yk; �k); (25)

yk+1i = max
�
0; yki + (2�k)

�1fi(x
k+1)

	
; (26)

where f�kg � [�; �] for some � � � > 0.

Of course, one expects the sequence f(xk; yk)g generated by (25){(26) to converge

to a point (x�; y�) 2 S�. There are some caveats, however. In the �rst place, the

augmented Lagrangian L is convex in x, but in principle L(�; yk; �k) may fail to at-

tain its minimum, in which case xk+1 is not de�ned. We remark that this situation

may happen even if problems (P ) and (D) have solutions. For instance, consider

the problem of minimizing a constant function of one variable over the the hal
ine

fx 2 R : ex � 1g. Clearly any nonpositive real is a primal solution, and it is imme-

diate that any pair (x; 0) with x � 0 satis�es (20)-(23), so that 0 is a dual solution,

but taking y = � = 1 and the constant value of the function also equal to 1, we

get L(x; y; �) = 1+maxf0; 1 + ex � 1g2 � 1 = e2x, which obviously does not attains

its minimum. Even if L(�; yk; �k) has minimizers, they might be multiple, because,

L though convex in x, is not strictly convex. Thus, there is no way in principle to

ensure that the sequence fxkg will be bounded. To give a trivial example, if none of

the fi's (0 � i � m) depends upon xn, we may choose the last component of xk+1 ar-

bitrarily (e.g. xk+1n = k), making fxkg unbounded. As a consequence, all convergence
results on the sequence fxkg will have to be stated under the assumption that such

a sequence exists and is bounded (later on we will see a variant of the method which

automatically ensures existence and boundedness of fxkg). On the other hand, we

will establish that the whole sequence fykg converges to a point in S�D under the sole
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condition of existence of solutions of (P ){(D). Of course, existence and boundedness

of fxkg can be ensured by imposing additional conditions on the problem data, like

coerciveness of f0, for instance (meaning that its level sets are bounded) or of any of

the constraint functions fi (1 � i � m), in which case the feasible set for problem

(P ) is necessarily bounded.

In order to provide a rationale for the method, we advance the facts, to be proved

later on, that yk+1 has been chosen so that it is nonnegative (this is immediate) and

that xk+1 minimizes L(�; yk+1) (this is not so immediate). As a consequence, we have

0 2 @f0(x
k) +

Pm
i=1 y

k
i @fi(x

k) and yk � 0 for all k. We may say that (20) and (21)

are satis�ed for all k. On the other hand, as we will see, (22) and (23) will hold only

at cluster points of f(xk; yk)g. In this sense this sequence is dual feasible and satis�es

the Lagrangian condition at all iterates, but it is primal infeasible and fails to satisfy

complementarity along the iterates.

Augmented Lagrangian method fos solving equality constrained nonlinear opti-

mization problems (nonconvex in general), were introduced in [18] and [39]. The �rst

method of this kind for inequality constrained problems appeared in [8], and was

furtherly developed in, e.g., [2] and [29]. Our presentation follows the formulation

in [41] and [42]. A deep analysis of AL and its convergence properties can be found

in [3]. Here we will follow an alternative procedure, consistent of reducing AL to a

particular case of the proximal point method, which we describe next. This approach

leads to a considerably simpler analysis and also gives slightly more robust results.

3 The Classical Proximal Point Method

The classical proximal point method (PP from now on) can be seen as an algorithm

for �nding a zero of a maximal monotone operator T : Rp ! P(Rp ).

We recall that T is monotone if hv� v0; z� z0i � 0 for all v 2 T (z), all v0 2 T (z0),
and all z, z0 2 Rp . T is maximal monotone if it is monotone, and furthermore for all

monotone operator T 0 such that T (z) � T 0(z) for all z 2 Rp , it holds that T = T 0. A

zero of T is a point z 2 Rp such that 0 2 T (z).

Starting from any z0 2 R
p , PP generates a sequence fzkg � R

p through the

iterative step

0 2 eTk(zk+1); (27)

with

eTk(z) = T (z) + �k(z � zk); (28)

where f�kg is a bounded sequence of positive real numbers. When T = @' for some

convex ' : Rm ! R[f1g, the problem of �nding a zero of T is equivalent to min'(y)

c
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and the iterative formulae (27), (28) become

yk+1 = argmin

�
'(y) + (�k=2)



y � yk


2�:

It is not easy to determine the exact origin of PP. Possibly, it started with works

by members of Thikonov's school dealing with regularization methods for solving

ill-posed problems, and one of the earliest relevant references is [30]. It received its

current name in the 60's, through the works of Moreau, Yoshida and Martinet, among

others (see [36], [33], [34]) and attained the form of (27){(28) in Rockafellar's works

in the 70's ([43], [44]). A more recent survey on the proximal point method can be

found in [31].

We will give next a convergence proof for PP, di�erent to some extent from the

proof in [43], which uses the concept of �rm nonexpansiveness. Here we follow an

approach which can also be applied to the generalized PP to be discussed in forth-

coming sections.

We need �rst a classical result, due to Minty. We recall that givenQ : Rp ! P(Rp ),
the inverse operator Q�1 : Rp ! P(Rp ) is always de�ned through the relation

w 2 Q�1(v) if and only if v 2 Q(w).

Theorem 1. If Q : Rp ! P(Rp ) is maximal monotone then I +Q is onto (i.e. for

all v 2 Rp there exists w 2 Rp such that v 2 Q(w)) and (I +Q)�1 is point-to-point.

Proof. See [35].

Minty's theorem is needed in the following convergence theorem for PP.

Theorem 2. If the maximal monotone operator T has zeroes, then the sequence fzkg
generated by PP (i.e. by (27){(28)) converges to a zero of T .

Proof. First we must establish that the sequence fzkg is well de�ned. Assuming

inductively that zk is well de�ned, we observe that (27){(28) are equivalent to saying

that zk+1 is such that zk 2 (I+��1k T )(zk+1). Such a zk+1 exists by Minty's Theorem

applied to the maximal monotone operator ��1k T , and is unique because (I+��1k T )�1

is point-to-point.

Next, we take any zero z� of T , which exists by assumption, and claim that the

following relation holds for all k � 0:

0 � 2hz� � zk+1; zk+1 � zki =


z� � zk



2 � 

z� � zk+1


2 � 

zk+1 � zk



2 : (29)
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The equality in (29) is simple algebra and the inequality follows from the facts that

(27){(28) can be written as zk�zk+1 2 ��1k T (zk+1) and that 0 2 ��1k T (z�). Therefore

we have hz�� zk+1; zk+1� zki = hz�� zk+1; 0� (zk� zk+1)i � 0, using monotonicity

of ��1k T in the rightmost equality.

By (29),


z� � zk+1



 �


z� � zk



, so that f


z� � zk



g is nonincreasing, and

henceforth convergent, since it is nonnegative. As a consequence


z� � zk



 � 

z� � z0




for all k, and thus fzkg is bounded. (29) also gives

0 �


zk+1 � zk



2 � 

z� � zk


2 � 

z� � zk+1



2 : (30)

Since the righmost expression in (30) converges to 0 as k goes to 1 because

f


z� � zk



g is convergent, it follows that
lim
k!1



zk+1 � zk


 = 0: (31)

We mention that maximality of T easily implies that the graph of T is closed,

i.e. that if (wk ; vk) 2 R
p � R

p satis�es vk 2 T (wk) for all k, and limk!1(wk; vk) =

( �w; �v) 2 Rp �Rp , then �v 2 T ( �w). This property is also called upper semicontinuity of

T . Next we observe that (27){(28) can also be rewritten as

�k(z
k � zk+1) 2 T (zk+1): (32)

Let �z be any cluster point of fzkg (which exists because fzkg is bounded). Taking
limits in (32) as k goes to 1 along an appropriate subsequence and using (31), we

get 0 2 T (�z), because f�kg is bounded, so that �z is a zero of T . As a consequence

f


�z � zk



g is nonincreasing. Since it has a subsequence which converges to 0, it

follows that the whole sequence converges to 0, i.e. �z = limk!1 zk.

4 The Connection between PP and AL

We will prove here that the sequences fykg generated by AL applied to problem (P )

and by PP applied to problem (D) are essentially the same. This result appeared for

the �rst time in [42]. The convergence analysis of AL will then be an easy consequence

of Theorems 2 and 3. In order to apply PP to problem (D) we de�ne � : Rm !
R[f1g as � (y) = � (y) if y � 0, � (y) = +1 otherwise, and take T : Rm ! P(Rm )

de�ned as T (y) = @ � (y).

Theorem 3. Let fykg be the sequence generated by PP applied to problem (D) (i.e.

by (27){(28) with T = @ � ) and f(bxk; byk)g the sequence generated by AL (i.e. by

(25){(26)). If by0 = y0 then byk = yk for all k � 0.

c
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Proof. We proceed by induction. Assume that yk = byk. First we claim that bxk+1
minimizes L(�; byk+1) with L as in (17). Observe that (26) guarantees that fbykg � R

m
+ .

De�ne ski (x) = �k

��
maxf0; byki + (2�k)

�1fi(x)g
�2

� (yki )
2

�
. Then we have

0 2 @xL
�bxk+1; byk; �k� = @f0(bxk+1) + mX

i=1

@ski (bxk+1) =

@f0(bxk+1) + mX
i=1

max
�
0; byki + (2�k)

�1fi(x
k+1)

	
@fi(bxk+1) =

@f0(bxk+1) + mX
i=1

byk+1@fi(bxk+1) = @xL(bxk+1; byk+1); (33)

using (25) in the inclusion, (24), linearity of the subdi�erential (e.g. [19], Vol. I, p.

261) and de�nition of ski in the �rst equality, the chain rule of subdi�erential calculus

(e.g. [19], Vol. I, p. 264) and some elementary calculus to di�erentiate ski in the

second equality, (26) in the third equality and (17) in the fourth one. Since L(�; byk+1)
is convex, because byk+1 � 0, we conclude from (33) that the claim is established.

Thus, by (17) and (19),

 (byk+1) = L(bxk+1; byk+1) = f0(bxk+1) + mX
i=1

byk+1i fi(bxk+1): (34)

By (19), (34) and (17), for all y 2 Rm ,

 (byk+1)�  (y) �  (byk+1)�L(bxk+1; y) = mX
i=1

(byk+1i � yi)fi(bxk+1): (35)

Next observe that (26) implies

byk+1i � byki = max
�
� byki ; (2�k)�1fi(bxk+1)	 � (2�k)

�1fi(bxk+1); (36)

which in turn implies

byk+1i (byk+1i � byki ) = (2�k)
�1byk+1i fi(bxk+1): (37)

By (36), (37), for all y 2 Rm+ ,

2�k(byk+1i � byki )(byk+1i � yi) = byk+1i fi(bxk+1)� 2�k(byk+1i � byki )yi �
byk+1i fi(bxk+1)� yifi(bxk+1): (38)

c
 Investigaci�on Operativa 1999



22 Iusem, A. N. � Augmented Lagrangian Methods and Proximal Point Methods ...

Combining (38) and (35)

 (byk+1)�  (y) � 2�khbyk+1 � y; byk � byk+1i i; (39)

for all y 2 R
m
+ . In view of the de�nition of � , (39) and the inductive assumption

imply that

2�k(y
k � byk+1) = 2�k(byk � byk+1) 2 @ � (byk+1): (40)

On the other hand, (27) and (28) imply, in view of Minty's Theorem, that yk+1 is

the only vector satisfying

2�k(y
k � yk+1) 2 @ � (yk+1): (41)

Thus, we get from (40) and (41) that byk+1 = yk+1, completing the induction

step.

With the help of Theorem 3, we get the following convergence result for AL.

Theorem 4. Assume that problems (P ) and (D) have solutions and that xk+1 as

de�ned by (25) exists for all k. If f(xk; yk)g is the sequence generated by AL (i.e. by

(25){(26)), then

i) The sequence fykg converges, as k goes to 1, to a solution y� of problem (D).

ii) All cluster points of fxkg (if any) are solutions of problem (P ).

Proof. (i) follows directly from Theorems 2 and 3. We proceed to prove (ii). Let �x

be a cluster point of fxkg. It su�ces to prove that (y�; �x) satisfy (20){(23). Consider

the operator G : Rn � R
m ! P(Rn � R

m ) de�ned as G = (@xL; 0). It is immediate

that G is maximal monotone. It follows from (33) that

(0; 0) 2 G(xk; yk) (42)

for all k. SinceG is upper semicontinuous, taking limits in (42) as k goes to1 along an

appropriate subsequence, we get that (0; 0) 2 G(�x; y�). In particular 0 2 @xL(�x; y�),
i.e. (20) holds. We already know that (21) holds by Theorem 2. We claim that (22)

and (23) follow from (26). Taking limits in (26) as k goes to 1 along an appropriate

subsequence, we get

y�i = max
�
0; y�i +

b�fi(�x)	; (43)

where b� 2 [�; �] is some cluster point of f�kg. Since � > 0, it follows easily from (43)

that fi(�x) � 0, i.e. (23) holds. Also, if y�i > 0, we get from (43) that y�i = y�i +
b�fi(�x),

implying that fi(�x) = 0, so that (22) also holds.

c
 Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 23

One motivation for considering variants of AL lies in the fact that L, as de�ned
by (24) is not twice di�erentiable in x even when the data functions fi (0 � i � n)

are su�ciently smooth. Another motivation is the lack of regularity of the sequence

fxkg, which in principle can be divergent. We will overcome the �rst limitation

by introducing two kinds of generalized distances, called Bregman distances and �-

divergences, which we will do in the next two sections. In order to eliminate the

second limitation, we will look at problems (P ) and (D) in the form of variational

inequality problems, to be de�ned in Section 7. This approach has also been developed

in [42] within the classical framework, i.e. without generalized distances, as discussed

in Section 8.

5 Bregman Functions and Distances

Take C � R
p closed, convex and with nonempty interior, and consider c : C ! R,

di�erentiable in int(C). De�ne Dc : C � int(C)! R as

Dc(z; z
0) = c(z)� c(z0)� hrc(z0); z � z0i: (44)

The function c is said to be a Bregman function with zone C, and Dc the Bregman

distance associated with c, if the following conditions hold:

B1. c is continuously di�erentiable on int(C).

B2. c is strictly convex and continuous on C.

B3. For all 
 2 R and all z 2 C the partial level sets �(z; 
) = fw 2 int(C) :

Dc(z; w) � 
g are bounded.
B4. If fzkg � int(C) and limk!1 zk = ez then limk!1Dc(ez; zk) = 0.

B5. If fwkg � C and fzkg � int(C) are sequences such that fwkg is bounded,

limk!1 zk = ez and limk!1Dc(w
k ; zk) = 0 then limk!1 wk = ez.

B6. If fzkg � C is such that limk!1 zk = ez and ez belongs to the boundary of C,

then limk!1 Dc(w; z
k) =1 for all w 2 int(C).

It follows easily from (44) and B1{B2 that Dc(z; z
0) � 0 for all z 2 C, z0 2 int(C),

and that Dc(z; z
0) = 0 if and only if z = z0. However, Dc in general is not symmetric

and it does not satisfy the triangular inequality. Bregman functions were introduced

in [4], only with conditions B1{B5 above. B6 was introduced in [20], where it is called

boundary coerciveness. Conditions B4{B6 hold automatically, as a consequence of

B1{B3, when C = R
p . For our applications to augmented Lagrangian methods, we

are interested only in the case in which C is the whole space or an orthant, so that we

present next some relevant examples of Bregman functions for these cases. Examples

of Bregman functions for other sets C, e.g. balls, boxes or polyhedra with nonempty

interior, can be found in [9].
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Example 1: C = R
p , c(z) = kzk2, in which case Dc(z; z

0) = kz � z0k2. More

generally c(z) = ztMz with M 2 Rp�p symmetric and positive de�nite, in which case

Dc(z; z
0) = (z � z0)tM(z � z0).

Example 2: C = R
p
+ , c(z) =

Pp
`=1 z` log z`, continuously extended to the boundary

of R
p
+ with the convention that 0 log 0 = 0. In this case

Dc(z; z
0) =

pX
`=1

[z` log(z`=z
0

`) + z0` � z`];

which is called the Kullback-Leibler distance, widely used in statistics (see [32]).

Example 3: C = R
p
+ , c(z) =

Pp
`=1(z

�
` � z

�
` ) with � � 1, � 2 (0; 1). For � = 2,

� = 1=2 we get

Dc(z; z
0) = kz � z0k2 + (1=2)

pX
`=1

�p
z` �

p
z0`

�2

p
z0`

;

for � = 1, � = 1=2 we have

Dc(z; z
0) = (1=2)

pX
`=1

�p
z` �

p
z0`

�2

p
z0`

:

6 �-divergences

In this section we discuss another class of \distances", which will be denoted as

d�(�; �), de�ned on the positive orthant of Rp . Take � : R++ ! R, convex and thrice

continuously di�erentiable, satisfying

�(1) = �0(1) = 0; �00(1) > 0; lim
t!0+

�0(t) = �1: (45)

If � satis�es (45) then d� : R
p
++ � R

p
++ ! R, de�ned by

d�(z; z
0) =

pX
`=1

z0`�
�
z`=z

0

`

�

is said to be a �-divergence. The next properties easily follow from (45) and the

de�nition of �-divergences.

Proposition 1.

i) d�(z; z
0) � 0 for all z, z0 2 Rp++ ,
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ii) d�(z; z
0) = 0 i� z = z0,

iii) the level sets of d�(�; z0) are bounded for all z0 2 Rp++ ,

iv) the level sets of d�(z; �) are bounded for all z 2 Rp++ ,

v) d�(z; z
0) is jointly convex in z, z0, and strictly convex in z,

vi) limk!1 d�(z; z
k) = 0 i� limk!1 zk = z.

Proof. Elementary.

We present next some relevant examples of �-divergences.

Example 4: �1(t) = t log t� t+ 1. Then

d�1(z; z
0) =

pX
`=1

[z` log(z`=z
0

`) + z0` � z`];

i.e. d�1 is the Kullback-Leibler distance of Example 2 and can therefore be extended

to R
p
+ �Rp++ . Up to additive linear terms in c and multiplicative constants in �, the

pair (�1; c1) with c1(x) =
Pp

`=1 z` log z` is the only pair (�; c) such that d� = Dc.

Example 5: �2(t) = t� log t� 1. Then

d�2(z; z
0) = d�1(z; z

0):

Example 6: �3(t) = (
p
t� 1)2. Then

d�3(z; z
0) =

pX
`=1

�p
z` �

q
z0`

�2

:

�-divergences were introduced in [46], and have been recently extended in [1] to

other open polyhedra besides Rn++ . We do not discuss this extension in the sequel,

since it is not of interest for our application to augmented Lagrangians. For conver-

gence of the proximal point method with �-divergences, an additional condition on �

is required, namely

�0(t) � �00(1) log t; (46)

for all t 2 R++ . The class of �-divergences satisfying (46) is called �4 in [23], where

it was introduced. The �-divergences of Examples 4{6 belong to �4.
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7 Variational Inequality Problems

Given a maximal monotone point-to-set operator T : Rp ! P(Rp ) and a closed and

convex set C � R
p , the variational inequality problem VIP(T ,C) consists of �nding

z� 2 C such that there exists u� 2 T (z�) satisfying
hu�; z � z�i � 0 (47)

for all z 2 C. The set of solutions of VIP(T ,C), which is closed and convex (see e.g.

[17]), will be denoted as S(T;C). It can be easily veri�ed that when T = @' for

some convex ' : Rp ! R [ f1g, VIP(T ,C) reduces to min'(z) subject to z 2 C.

When C = R
p , VIP(T ,C) reduces to the problem of �nding a zero of T . When

C = R
p
+ , VIP(T ,C) becomes the nonlinear complementarity problem, consisting of

�nding z 2 Rp+ such that there exists u 2 Rp+ \ T (z) satisfying utz = 0.

If we de�ne IC : Rp ! R [ f1g as the indicator function of C, i.e. IC(z) = 0

if z 2 C, IC(z) = +1 otherwise, and then NC : Rp ! P(Rp ) as the normalizing

operator of C, i.e. NC = @IC , then VIP(T ,C) becomes the problem of �nding a zero

of the maximal monotone operator T+NC . Thus, PP can be used to solve VIP(T ,C),

by applying it to T +NC . The inconvenience is that the subproblems consist now of

�nding a zero of eTk+NC with eTk as in (28), i.e. of solving VIP( eTk,C). In other words,
the constraint z 2 C remains in the subproblems, which are in principle as di�cult

(though in general better conditioned, thanks to the additional regularization term

in (28)) as the original problem VIP(T ,C). For the case in which C has nonempty

interior, we will use in the following sections Bregman distances and �-divergences to

construct generalized proximal point methods, where the regularization term plays

also a penalization role, forcing the generated sequence fzkg to remain in the interior

of C, so that the subproblems are \authentically" unconstrained, i.e. that the con-

straint z 2 C becomes super
uous. These generalized PP's will give raise in turn to

generalized augmented Lagrangian methods where the augmented Lagrangian is as

smooth in x as the data functions fi's.

We close this section by establishing the connection between problems (P ){(D)

and VIP(T ,C). If we take s = n+m, C = R
n � R

m
+ and

T (x; y) =
�
@xL(x; y);�@yL(x; y)

�
=

�
@f0(x) +

mX
i=1

yi@fi(x);�f(x)
�
; (48)

with f(x) = (f1(x); : : : ; fm(x)), then it can be easily veri�ed that T is maximal

monotone and that S(T;C) = S� = S�P � S�D. The rightmost equality in (48) follows

from [19], Vol. I, p. 261.

8 Generalized Proximal Point Methods with Bregman Functions

We introduce now the generalized proximal point method with Bregman functions

(GPPB from now on) for solving VIP(T ,C). Consider a Bregman function with zone
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C and assume that int(C) is nonempty. Starting from z0 2 int(C), GPPB generates

a sequence fzkg through the iterative formula

0 2 Tk(zk+1);

where Tk : R
p ! P(Rp ) is de�ned as

Tk(z) = T (z) + �k [rc(z)�rc(zk)];

with �k as in PP. In this case, there is no need to modify T by adding the normalizing

operator NC , because divergence of rc at the boundary of C guarantees that the

whole sequence fzkg is contained in the interior of C. This is more evident if we

consider the case of T = @' with a convex ' : Rm ! R. If the problem of interest is

min'(x) subject to x 2 E, and h is a Bregman function with zone E � R
m , then the

iteration of GPPB becomes

yk+1 = argminy2Rm
�
'(y) + �kDh(y; y

k)
	
; (49)

while the subproblems of PP for the same problem, after adding the normalizing

operator NC to the operator @', become

yk+1 = argminy2E
�
'(y) + (�k=2)



y � yk


2 	: (50)

Note that the subproblems given by (49) are unconstrained, while the subprob-

lems given by (50) are subject to the constraints y 2 E. In the case of GPPB, these

constraints are taken care of by Dh which, besides its regularization role, as in PP, has

also a penalization e�ect. This is one advantage of GPPB over PP. Another one will be

discussed when we consider the generalized augmented Lagrangians related to GPPB.

GPPB can be traced back to [15] and [16], which considered methods related to

GPPB with the Bregman function of Example 2 applied to linear programming. The

next step was [14], which considered GPPB with the same Bregman function applied

to general convex optimization problems. Relevant works on GPPB in its current

formulation include [13], which considers GPPB for �nding zeroes of monotone op-

erators (or VIP(T ,C) with solutions in the interior of C) and [10], [11], [20], [28],

which study GPPB for the convex optimization problem under progressively weaker

assumptions on the problem data or the Bregman function. GPPB for variational

inequality problems has been analyzed in [5].

GPPB can be applied for solving problems (P ) and (D) in two di�erent ways.

One is to apply it directly to problem (D), using (49) with ' = � . We will prove

that the sequence fykg generated in this way coincides with the sequence fykg gener-
ated by a generalized augmented Lagrangian method (to be called GALB), which has

the same structure of AL, in the sense that xk+1 minimizes a generalized augmented

Lagrangian bL evaluated at yk and then yk is updated through a closed formula. An

advantage of GALB over AL is that bL is as many times di�erentiable as a function

of x as the problem data and the Bregman function are, while the augmented La-

grangian L of AL is not twice di�erentiable. Thus, fast second order methods, like
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Newton's one, can be used to minimize bL. Each choice of the Bregman function h in

(49) generates a di�erent GALB method. For h(y) =
Pm

i=1 yi log yi we recover the

exponential multipliers method (see [3]).

The second option is to apply GPPB to VIP(T ,Rn � R
m
+ ), with T as in (48).

This version of GPPB turns out to be equivalent to a generalized doubly augmented

Lagrangian method (to be called GDALB), with a Lagrangian eL, equal to bL plus an

additional regularization term in x, which ensures existence and uniqueness of xk for

all k and boundedness of the sequence fxkg.

We introduce next the methods resulting from applying GPPB to problems (P ){

(D), according to both alternatives. In Section 10 we will discuss the convergence

properties of GPPB.

Given a sequence f�kg � [�; �] for some � � � > 0, the generalized proximal point

method with Bregman distances (GPPB) applied to problem (D), with a Bregman

function h whose zone is Rm+ , generates a sequence fykg given by

y0 2 Rm++ ; (51)

yk+1 = argminf� (y) + �kDh(y; y
k)g; (52)

with  as in (20). We will assume that h is separable, i.e. h(y) =
Pm

i=1 hi(yi) with

hi : R+ ! R. By B1{B2, all the hi's are convex and continuous in R+ , continuously

di�erentiable in R++ , and condition B6 can be written in terms of the hi's as

B6'. limt!0+ h
0

i(t) = �1 for 1 � i � m.

Assuming that (D) has solutions, it has been proved in Theorem 4.1 of [20] that

yk+1 as de�ned by (52) exists, is unique, belongs to Rm++ and is the only solution of

the �rst order optimality condition for (52), i.e.

�k
�
rh(yk)�rh(yk+1)

�
2 @(� (yk+1)): (53)

Now we look at GPPB applied to VIP(T ,Rn �Rm+ ), with T as in (48). We take a

sequence f�kg as above, a Bregman function g with zone Rn and a separable Breg-

man function h(y) =
Pm

i=1 hi(yi) with zone Rm+ . Note that g needs to satisfy only

conditions B1{B3. We de�ne c(z) = g(x)+h(y). It is immediate that c is a Bregman

function with zone Rn � R
m
+ .

GPPB applied to this problem generates a sequence fzkg = f(xk; yk)g given by

x0 2 Rn ; y0 2 Rm++ ; (54)

0 2 T (zk+1) + �k
�
rc(zk+1)�rc(zk)

�
: (55)
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In view of (48) and the de�nitions of c and h, (55) can be rewritten as

�k
�
rg(xk)�rg(xk+1)

�
2 @f0(xk+1) +

mX
i=1

yk+1i @fi(x
k+1); (56)

fi(x
k+1) = �k

�
h0i(y

k+1
i )� h0i(y

k
i )
�

(1 � i � m): (57)

Next we introduce the generalized augmented Lagrangian method (GALB) for

problems (P ) and (D). We remind that, given a convex ' : R ! R[f+1g, the convex
conjugate '� : R ! R[f+1g is de�ned as '�(t) = sup�2Rf�t�'(�)g. It is well known
that, when they exist, the derivatives of ' and '� are mutual inverses (e.g. [19], V.

II, p. 48). Take f�kg as above and a separable Bregman function h(y) =
Pm

i=1 hi(yi)

with zone Rm+ . The generalized augmented Lagrangian bL : Rn � R
m � R++ ! R is

de�ned as

bL(x; y; �) = f0(x) + �

mX
i=1

h�i
�
h0i(yi) + ��1fi(x)

�
: (58)

GALB generates a sequence f(xk ; yk)g � R
n � R

m given by

x0 2 Rn ; y0 2 Rm++ ; (59)

xk+1 2 argminx2Rn bL(x; yk; �k); (60)

yk+1i = (h�i )
0
�
h0i(y

k
i ) + ��1k fi(x

k+1)
�

(1 � i � m): (61)

Finally, we present the generalized doubly augmented Lagrangianmethod (GDALB)

for problems (P ) and (D). We take f�kg and h as in GALB, and additionally a

Bregman function g with zone Rn . The generalized doubly augmented LagrangianeL : Rn � R
m � R++ � R

n ! R is de�ned as

eL(x; y; �; w) = f0(x) + �

mX
i=1

h�i
�
h0i(yi) + ��1fi(x)

�
+ �Dg(x;w); (62)

GDALB generates a sequence f(xk; yk)g � R
n � R

m given by

x0 2 Rn ; y0 2 Rm++ ; (63)

xk+1 2 argminx2Rn eL(x; yk ; �k; xk); (64)

yk+1i = (h�i )
0
�
h0i(y

k
i ) + ��1k fi(x

k+1)
�

(1 � i � m): (65)
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As in the case of AL, minimizers in (60), may fail to exist, even when prob-

lems (P ) and (D) have solutions. If we take a similar example, namely the one-

dimensional problem min 1 s.t. ex � 1, and consider GALB with h(x) = x log x, we

get eL(x; 1; 1) = 1 + ex (see (102)), which has no minimizers, even though, as in the

case of the former example, any pair (x; 0) with x � 0 belongs to S�P � S�D. Again,

boundedness of the level sets of any of the fi's (0 � i � m), for instance, is enough

to ensure existence and uniqueness of xk . Also, even if fxkg is well de�ned, it might

be unbounded (e.g., the same example as used for AL). GDALB, on the other hand,

guarantees existence and uniqueness of xk for all k, and boundedness of the sequence

fxkg, as we prove below.

GALB was introduced for the �rst time in [13] and further analyzed in [28].

GDALB in fact has also a version within the classical framework, which could be

called DAL, introduced in [42]. It modi�es AL through the addition of a quadratic

regularization term in x to the augmented Lagrangian, i.e. by changing (25) to

xk+1 2 argminx2RnL(x; yk; �k) + �k


x� xk



2 ;
with L as in (24), while (26) remains unchanged. In this case, the minimand in the

de�nition of xk+1 is strictly convex and coercive (due to the presence of the quadratic

term), so that xk+1 exists and is unique. Also, it can be proved that the whole se-

quence fxkg converges to a point in S�P , if this set is nonempty. The proof, similar to

the convergence proof for AL presented in Theorem 2, can be found in [42]. GDALB

as presented here, i.e. with Bregman distances, was also introduced in [13]. In this

reference however, the convergence result for GDALB, appearing in Theorem 8, is

wrong, because the author assumes that the interior of the zone of h contains Rm+ .

In such a case (65) does not guarantee nonnegativity of yk+1. In fact h(y) = kyk2
satis�es the asumptions in [13], but for this h we obtain yk+1i = yki + ��1k fi(x

k+1),

which might be negative. The correct formula associated with this h would be pre-

cisely (26), but in (26) the \max" forces nonnegativity of fykg. A correct analysis,

which avoids this pitfall, is presented in Theorem 8 below.

Next we establish convexity of bL, eL in x.

Proposition 2. Both bL and eL are convex functions of x.

Proof. Observe that the image of (h�i )
0 is the domain of h0i, equal to R++ by B6'.

Thus, (h�i )
0 is positive, i.e. h�i is increasing. Since fi is convex and � is positive,

h0i(yi)+�
�1fi(�) is convex. Since h�i is convex and increasing, we get that h�i

�
h0i(yi)+

��1fi(�)
�
is convex (see, e.g., [19], Vol. I, p. 264). Since f0 and Dg(�; w) are convex,

the result follows in view of (58), (62).

Examples of bL, eL for speci�c choices of g, h are presented in Section 13.
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9 The Connection between GPPB, GALB and GDALB

We will prove that, starting from the same y0, the sequences fykg generated by (51),

(53) and by GALB coincide. This result was proved for the �rst time in [13]. The

same holds for the sequences fykg generated by (56){(57) and by GDALB. The proof

of the following theorem follows the same line as the proof of Theorem 3.

Theorem 5. Let fykg be the sequence generated by (51) and (53), and f(bxk; byk)g
the sequence generated by GALB (i.e. by (59){(61)). Assume that bxk as de�ned by

(60) exists for all k. If y0 = by0 then yk = byk for all k � 0.

Proof. We proceed by induction. Assume that yk = byk. We will prove that yk+1 =byk+1. First we claim that bxk+1 minimizes L(�; byk+1) with L as in (17). Let qki (x) =

h�i
�
h0i(byki ) + ��1k fi(x)

�
. By (60), (58),

0 2 @x bL�bxk+1; byk; �k� = @f0(bxk+1) + �k

mX
i=1

@qki (bxk+1) =

@f0(bxk+1) + mX
i=1

(h�i )
0
�
h0i(byki ) + ��1k fi(bxk+1)�@fi(bxk+1); (66)

using linearity of the subdi�erential and the chain rule of subdi�erential calculus (see

[19], Vol. I, p. 261 and p. 264). By (66), (61) and (17),

0 2 @f0(bxk+1) + mX
i=1

byk+1i @fi(bxk+1) = @xL(bxk+1; byk+1): (67)

The claim is established. Thus, by (17) and (20),

 (byk+1) = L(bxk+1; byk+1) = f0(bxk+1) + mX
i=1

byk+1i fi(bxk+1): (68)

By (20), (68) and (17), for all y 2 Rm ,

 (byk+1)�  (y) �  (byk+1)�L(bxk+1; y) = mX
i=1

(byk+1i � yi)fi(bxk+1): (69)

Next observe that, in view of (61) and the relation between the derivatives of hi
and h�i ,

[rh(byk)�rh(byk+1)]i = h0i(byki )�h0i(byk+1i ) = h0i(byki )�h0i�(h�i )0�h0i(byki )+��1k fi(bxk+1)�� =
h0i(byki )� h0i(byki )� ��1k fi(bxk+1) = ���1k fi(bxk+1): (70)
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By inductive assumption, (70) and (69), for all y 2 Rm+ ,

�khrh(yk)�rh(byk+1); y � byk+1i = �khrh(byk)�rh(byk+1); y � byk+1i �  (byk+1)�  (y):

(71)

It follows from (71) that �k[rh(yk) � rh(byk+1)] 2 @(� (byk+1)), i.e. that byk+1
solves (53). Since (53) is equivalent to (52), which uniquely determines the next

iterate yk+1 of the sequence fykg, we conclude that such next iterate is preciselybyk+1. Thus, we have established that yk+1 = byk+1.
Theorem 6. tarting from the same z0 = (x0; y0), the sequence fzkg generated by

(56){(57) and the sequence f(xk; yk)g generated by GDALB coincide.

Proof. It su�ces to show that (56){(57) are equivalent to (64){(65). Note that, in

view of the relation between the derivatives of hi, h
�

i , (57) is equivalent to

yk+1i = (h�i )
0
�
h0i(y

k
i ) + ��1k fi(x

k+1)
�
; (72)

which is precisely (65). In view of (72), (56) is equivalent to

0 2 �k
�
rg(xk+1)�rg(xk)

�
+@f0(x

k+1)+

mX
i=1

(h�i )
0
�
h0i(y

k
i )+�

�1
k fi(x

k+1)
�
@fi(x

k+1) =

�k
�
rg(xk+1)�rg(xk)

�
+ @f0(x

k+1) +

mX
i=1

@qki (x
k+1): (73)

Observe that, by (44), rg(xk+1)�rg(xk) is rDg(�; xk) evaluated at xk+1. Thus,

(73) is equivalent to saying that 0 2 @x eL(xk+1; yk; �k; xk) because of (62), i.e., in view
of Proposition 2, that xk+1 2 argmin eL(�; yk; �k; xk), which is precisely (64).

10 Convergence Analysis for the Dual Sequence fykg of GALB

and GDALB

In this section we establish the convergence properties of the sequence fykg generated
either by GALB or by GDALB. For y 2 R

m
+ , let J(y) =

�
i 2 f1; : : : ;mg : yi = 0

	
,

I(y) = f1; : : : ;mg n J(y).

Theorem 7. If problem (D) has solutions, then

i) the sequence fykg generated by GALB (i.e. by (59){(61)) converges to a point

y� belonging to S�D and J(y�) � J(by) for all by 2 S�D,
c
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ii) if xk as de�ned by (60) exists for all k and fxkg has cluster points, then any

pair (�x; y�), where �x is a cluster point of fxkg, satis�es conditions (20){(22).

Proof. i) Since, by Theorem 5, fykg coincides with the sequence generated by the

proximal point with Bregman distances applied to problem (D), the result follows

from already established results for this method applied to convex optimization, e.g.

Theorems 4.1 and 5.1 in [20].

ii) De�ne G : Rn � R
m ! P(Rn � R

m ) as G(x; y) =
�
@xL(x; y); 0

�
. It is immediate

that G is maximal monotone. By maximality, it is upper semicontinuous. Note that

(67) can be rewritten as

(0; 0) 2 G(bxk+1; byk+1): (74)

By upper semicontinuity of G, taking limits in (74) as k goes to 1 along an

appropriate subsequence, we get, in view of Theorem 5, that (�x; y�) satis�es (20).

(21) holds because y� belongs to S�D by (i). (22) certainly holds if y�i = 0. If y�i > 0,

we get from (70)

fi(x
k+1) = �k

�
h0i(y

k+1
i )� h0i(y

k
i )
�
: (75)

Taking limits in (75) as k goes to 1 along an appropriate subsequence, and re-

membering that f�kg is bounded, the right hand side of (75) converges to 0, because

limk!1 yki = limk!1 yk+1i = y�i > 0, and h0i is continuous in R++ by B1. Thus

fi(�x) = 0 and (22) holds.

Convergence of the proximal method with Bregman distances for convex optimiza-

tion has also been proved in [11], but in this reference a condition on the Bregman

function c stronger than B6 is assumed, namely that the image of int(C) through rc
is the whole space Rp . Some relevant Bregman functions, like the one in Example 3

of Section 5, satisfy B6 but not this stronger condition.

Now we analyze the sequence fykg generated by GDALB, which coincides with

the sequence fykg generated by (54){(55), by virtue of Theorem 6. Convergence of

the sequence f(xk; yk)g generated by GPPB applied to VIP(T ,Rn � R
m
+ ), with T

as in (48), to a point in S�, would follow directly from the results in [5], excepting

for the following obstacle. Several technical assumptions on T are made in [5] to

ensure convergence. All but one of them hold for T as in (48). The missing one is

paramonotonicity, introduced in [9]. T is said to be paramonotone if it is monotone

and additionally hv � v0; z � z0i = 0 with v 2 T (z), v0 2 T (z0) implies v0 2 T (z),

v 2 T (z0). We show next that T as in (48) is never paramonotone (unless (P ) is

unconstrained): take x, i such that there exists 0 6= �i 2 @fi(x), take �
0 2 @f0(x)

such that �0 + �i =2 @f0(x) (�
0 exists because @f0(x) is bounded, see [19], Vol. I, p.

283) and let z = (x; ei), z0 = (x; 0). Then (�0 + �i;�f(x)) 2 T (z), (�0;�f(x)) 2
T (z0) and h(�0 + �i;�f(x)) � �(�0;�f(x)); z � z0i = h(�i; 0) � �(0; ei)i = 0, but

(�0+�i;�f(x)) =2 T (z0) = (@f0(x);�f(x)). Thus this application of GPPB requires a

c
 Investigaci�on Operativa 1999



34 Iusem, A. N. � Augmented Lagrangian Methods and Proximal Point Methods ...

new convergence proof. Our next result puts together several partial results from [5],

which do not require paramonotonicity, and others, which are related to the speci�c

form of T as given by (48). The proof of the following theorem follows the same line

as the proof of Theorem 2, and can be seen also as a corrected version of Theorem 8

in [13], avoiding the mistake mentioned above.

Theorem 8. Let fzkg = f(xk; yk)g be the sequence generated by (54){(55) (or, equiv-

alently, by (56){(57)). If S� 6= ; then the following results hold:

i) fDc(z
�; zk)g is nonincreasing (and convergent) for all z� 2 S�.

ii) The sequence fzkg is bounded.

iii) limk!1(zk+1 � zk) = 0.

iv) All cluster points �z = (�x; �y) of fzkg satisfy conditions (20){(22).

v) All cluster points of fykg belong to S�D.

vi) If �y is a cluster point of fykg then J(�y) � J(by) for all by 2 S�D.

Proof. Items (i){(iii) follows from the results in [5], since their proofs in this reference

do not use paramonotonicity. For the sake of completeness we include their proof,

without too many details. The facts that zk+1 is uniquely determined by (55) and

that fzkg � int(C) (i.e. that fykg � R
m
++ ) have been proved in Theorem 1 of [5],

since all its assumptions hold in our case. It follows easily from (44) that

0 � hrc(zk)�rc(zk+1); zk+1 � z�i = Dc(z
�; zk)�Dc(z

�; zk+1)�Dc(z
k+1; zk);

(76)

where the inequality follows from the fact that �k
�
rc(zk)�rc(zk+1)

�
2 T (zk+1) by

(55), and so �khrc(zk)�rc(zk+1); zk+1�z�i � �khu�; zk+1�z�i � 0 by monotonicity

of T , where u� 2 T (z�) is the point which satis�es (47). Since Dc is nonnegative, it

follows from (76) that Dc(z
�; zk+1) � Dc(z

�; zk), establishing (i). By (i), Dc(z
�; zk) �

Dc(z
�; z0) for all k � 0, and thus (ii) follows from B3. By (76)

0 � Dc(z
k+1; zk) � Dc(z

�; zk)�Dc(z
�; zk+1): (77)

By (i) the right hand side of (77) converges to 0 as k goes to 1, so that

lim
k!1

Dc(z
k+1; zk) = 0; (78)

and then (iii) follows easily from (78) and B5, using (ii).

By (ii), fzkg has cluster points. Let �z = (�x; �y) be any of them. Using G as de�ned

in the proof of Theorem 7, we may rewrite (56) as�
�k
�
rg(zk)�rg(zk+1)

�
; 0
�
2 G(xk+1; yk+1): (79)
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Since f�kg � [�; �], the limit of the right hand side of (79) as k goes to 1 along

an appropriate subsequence, is, in view of (iii), b���rg(�x)�rg(�x)�; 0� = (0; 0), whereb� > 0 is some cluster point of f�kg, because rg is continuous at �x, since the zone of
g is Rn . It follows from (79) and upper semicontinuity of G that

0 2 @xL(�x; �y) = @f0(�x) +

mX
i=1

�yi@fi(�x);

i.e. �z satis�es (20). (21) holds at �y because fykg � R
m
++ .

We look now at (22), which certainly holds if �yi = 0. If �yi > 0, then h0i is

continuous at �yi and, taking limits as k goes to 1 along an appropriate subsequence

in (57), we get, using (iii) and the fact that f�kg is bounded,

fi(�x) = e��h0i(�yi)� h0i(�yi)
�
= 0; (80)

where e� is some cluster point of f�kg. By (80), �z satis�es (22) and therefore (iv) holds.

We proceed to prove (v). By (78), (76), (i) and (57)

0 = lim
k!1

hrc(zk)�rc(zk+1); zk+1 � z�i =

lim
k!1

�
hrg(xk)�rg(xk+1); xk+1 � x�i+ ��1k

mX
i=1

fi(x
k+1)(y�i � yk+1i )

	
: (81)

Considering an appropriate subsequence in (81),

0 = hrg(�x)�rg(�x); �x� x�i+ e��1 mX
i=1

fi(�x)(y
�

i � �yi) = e��1 mX
i=1

fi(�x)(y
�

i � �yi);

where e� is a cluster point of f�kg. Thus,

0 =

mX
i=1

fi(�x)(y
�

i � �yi) = L(�x; y�)�L(�x; �y) �  (y�)�L(�x; �y); (82)

using (17) and (20). Since (�x; �y) satis�es (20) by (iv), 0 2 @xL(�x; �y), i.e. �x 2
argminx2Rn L(x; �y), implying, in view of (19), that

 (�y) = L(�x; �y): (83)

By (82) and (83),  (y�) �  (�y). Since �y � 0 by (iv) and y� maximizes  in Rm+
because S� = S�P �S�D, we get that �y also maximizes  in Rm+ , i.e., it belongs to S�D .
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In order to establish (vi), we must prove that �yi > 0 if byi > 0 for some by 2 S�D.

Suppose, by contradiction, that for some i and some by 2 S�D it holds that byi > 0 and

�yi = 0. Then, taking any bx 2 S�P , it holds that bz := (bx; by) 2 S�, and we get

hi(byi)� hi(y
k
i )� h0i(y

k
i )(byi � yki ) = Dhi(byi; yki ) � mX

`=1

Dh`(by`; yk` ) =

Dh(by; yk) � Dh(by; yk) +Dg(bx; xk) = Dc(bz; zk) � Dc(bz; z0); (84)

using (i) in the rightmost inequality and nonnegativity of Bregman distances. By

(84),

h0i(y
k
i )(y

k
i � byi) � Dc(bz; z0) + hi(y

k
i )� hi(byi): (85)

Taking limits in (85) as k goes to 1 along an appropriate subsequence, the right

hand side converges to the �nite value Dc(bz; z0)+hi(�yi)�hi(byi), while the right hand
side diverges to +1, because yki � byi converges, along the subsequence, to �yi � byi
= �byi < 0, while h0i(y

k
i ) diverges, along the subsequence, to limt!0+ h

0

i(t) = �1, by

B6'. This contradiction establishes the result.

Corollary 1. If S� 6= ; then the sequence f(xk; yk)g generated by GDALB (i.e. by

(63){(65)) is bounded, all its cluster points satisfy (20){(22), all cluster points of fykg
belong to S�D and J(�y) � J(by) for all by 2 S�D. In particular, xk, as de�ned by (64)

exists and is unique for all k.

Proof. Follows from Theorems 6 and 8. We mention again that existence and unique-

ness of xk follow from existence and uniqueness of zk, established in Theorem 1 of

[5].

11 Proximal Point and Augmented Lagrangian Methods with

�-divergences

We consider the problem

min'(y) (86)

s.t. y � 0; (87)

with a convex ' : Rm ! R [ f1g. Given a �-divergence d� satisfying (46), the

generalized proximal point method with �-divergences (GPP� from now on) generates

a sequence starting from an arbitrary y0 2 Rm++ through the iteration formula

yk+1 = argmin
�
'(y) + �kd�(y; y

k)
	
; (88)
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with f�kg � [�; �] for some � � � > 0.

GPP� has been introduced in [23], and further analyzed in [25] and [24]. GPP�

applied to general nonlinear complementarity problems, rather than convex optimiza-

tion problems, is studied in [6]. It has been proved in [23] that when problem (86){(87)

has solutions, the sequence fykg generated by GPP� (i.e. by (88)) converges to a so-

lution of problem (86){(87). We will not include here a proof of this result, which is

considerably harder than the similar result for GPPB, e.g. Theorem 4.1 of [20], and

also than Theorem 8.

We present next the augmented Lagrangian method with �-divergences (GAL�

form now on) for solving problems (P ). De�ne L� : Rn � R
m � R++ as

L�(x; y; �) = f0(x) + �

mX
i=1

yi�
�
�
��1fi(x)

�
;

where �� is the convex conjugate of �. Starting from (x0; y0) 2 R
n � R

m
++ , GAL�

generates a sequence f(xk; yk)g through the following formulae:

xk+1 = argminx2RnL�(x; yk; �k); (89)

yk+1i = yki (�
�)0
�
��1k fi(x

k+1)
�
: (90)

It has been proved in [23] that the sequences fykg generated by GPP� applied to

problem (D) and by GAL� applied to problem (D) coincide when both start from the

same y0. The proof is similar to those of Theorems 3 and 5 and will be omitted here.

We mention that for � as in Example 5 of Section 6 we recover Polyak's modi�ed

barrier method (see [37]). In view of the results above, the sequence fykg generated
by GAL� converges to a point y� 2 S�D whenever S� is nonempty. It is also easy

to prove that if the sequence fxkg generated by GAL� has cluster points, (�x; y�)

satis�es (20){(22) for any cluster point �x of fxkg, as we have proved in Theorem 7(ii)

for GALB. In the following section we discuss more accurate convergence results for

the sequence fxkg of GAL�.

12 Convergence Analysis for the Primal Sequence fxkg of GALB

and GDALB

Of course, one expects to prove that the sequence fxkg generated by either GALB,

GAL� or GDALB converges to a point in S�P , or at least that one of its cluster points

belongs to S�P . In the case of GALB or GAL�, we must confront the already discussed

fact that the sequence fxkg may very well be unbounded. The situation is di�erent

for GDALB, thanks to the additional regularization term Dg(x;w) in (62). In fact,

fzkg (and henceforth fxkg) is uniquely determined by (56){(57) (or (64){(65)), and

fxkg is bounded by Corollary 1. We mention that, as a consequence, (64) can be

c
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written as xk+1 =argminx2Rn eL(x; yk; �k; xk). The additional regularization term ineL makes it strictly convex, and this is the main advantage of GDALB over GALB or

GAL�. From now on we restrict our discussion to GALB and GDALB.

Assuming then that fxkg is bounded, it follows from Theorem 7(ii) and Corollary

1 that in order to establish optimality of a cluster point �x of fxkg it su�ces to check

that �x is primal feasible, i.e. that it satis�es (23) for all i, which is true for i such that

�yi > 0, since (�x; �y) satis�es (22). The problem lies in the case of �yi = 0, because, if we

try to take limits in (57) or (75) for some i such that �yi = 0, we get an undetermined

right hand side, since limt!0+ h
0

i(t) = �1 by B6'. We mention that, if we knew that

the whole sequence fxkg converges, say to x�, then it follows easily that x� satis�es

(23), because, since yk � 0, for each i such that �yi = 0 there exists a subsequence

fy`kg of fykg such that y`k+1i � y`ki , and, since h0i is nondecreasing by B2, the right

hand side of (57) or (75) with `k instead of k is nonpositive, so that, taking limits

along this subsequence, we get that fi(x
�) � 0. The problem is that we do not know

whether the whole sequence fxkg converges or not. In fact, the argument above allows

us to establish that for each i there exists a cluster point of fxkg which satis�es the i-

th constraint in (16), but not that there exists a cluster point that satis�es all of them.

We will deal with this obstacle in two ways. First we will see that under a strict

complementarity assumption on problem (P ), and an additional condition on fzkg
which our sequences do satisfy, conditions (20){(22) automatically imply (23), and

all cluster points of fxkg (if any) belong to S�P . In the case of GDALB, we get as a

consequence that the whole sequence f(xk; yk)g converges to some (x�; y�) 2 S�. In

the absence of this strict complementarity assumption, we will prove primal optimal-

ity of the cluster points of the averaged sequence f�xkg introduced in Section 2. The

remaining results in this section are taken from [7], and are, to our knowledge, new.

Before introducing the new assumption we need a preliminary lemma on the solu-

tion set of a certain variational inequality problem and some further notation. Let V

be the set of pairs (x; y) 2 Rn �Rm which satisfy (20){(22). For any J � f1; : : : ;mg,
let UJ = fy 2 Rm+ : J(y) � Jg, VJ = f(x; y) 2 V : J(y) = Jg.

Lemma 1. With the notation above, if T is as de�ned by (48), then VJ � S(T;Rn �
UJ) � V for any J � f1; : : : ;mg.

Proof. By (47) and (48), S(T;Rn �UJ) is the set of pairs (�x; �y) 2 Rn �UJ such that

h��; x� �xi+
mX
i=1

fi(�x)(�yi � yi) � 0 (91)

for some �� 2 @f0(�x)+
Pm

i=1 �yi@fi(�x) and all (x; y) 2 Rn �UJ . Let I = f1; : : : ;mgnJ .
Take (�x; �y) 2 VJ (so that �y 2 UJ). Since (�x; �y) belongs to VJ � V , it satis�es (20), so
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that we can take �� = 0. Then, for all (x; y) 2 Rn � UJ ,

h��; x� �xi+
mX
i=1

fi(�x)(�yi � yi) =

mX
i=1

fi(�x)(�yi � yi) = �
mX
i=1

fi(�x)yi = �
X
i2I

fi(�x)yi;

(92)

using (22) and the fact that yi = 0 for i 2 J because y 2 UJ . For i 2 I , �yi > 0,

because (�x; �y) 2 VJ , and thus, by (22), fi(�x) = 0. It follows that the rightmost ex-

pression in (92) vanishes, and therefore (91) holds. Thus, (�x; �y) 2 S(T;Rn �UJ) and
we have proved that VJ � S(T;Rn � UJ).

Take now (�x; �y) 2 S(T;Rn � UJ), so that (91) holds for some � 2 @f0(�x) +Pm
i=1 �yi@fi(�x) and for all (x; y) 2 Rn � UJ . Choosing (x; y) = (�x � ej ; �y) 2 Rn � UJ

with 1 � j � n, we get from (91) that �� = 0, and thus (�x; �y) satis�es (20). Condition

(21) holds because (�x; �y) 2 S(T;Rn � UJ) � R
n � R

m
+ . It remains to be checked

that (�x; �y) satis�es (22), which is certainly the case if �yi = 0. If �yi > 0 then take

(x; y) = (�x; �y � (1=2)�yie
i) 2 UJ , and get from (91) (1=2)fi(�x)�yi � 0, implying that

fi(�x)i � 0. Take next (x; y) = (�x; �y + 2�yie
i) 2 UJ , and get from (91) �fi(�x)�yi � 0,

implying that fi(�x) � 0. It follows that fi(�x) = 0 and therefore (�x; �y) satis�es (22).

Since (�x; �y) satis�es (20){(22), we get that (�x; �y) 2 V and so we have proved that

S(T;Rn � UJ) � V

Usefulness of Lemma 1 lies in the fact that in general V is not convex, but

S(T;Rn � UJ) is. The lemma allows us to conclude that at least the convex hull

of VJ is contained in V (in fact, it follows easily from the lemma that VJ is indeed

convex). Next we introduce the strict complementarity assumption, called SCA.

De�nition 1. The strict complementarity assumption SCA holds for problems (P )

and (D) if for all (�x; �y) 2 S� and for all i (1 � i � m) it holds that either �yi > 0 or

fi(�x) < 0.

Loosely speaking, SCA says that no constraint in (16) which is tight at some so-

lution of (P ) is redundant.

The following lemma, of some interest on its own, is closely related to Proposition

4 in [21], which deals with nonlinear complementarity problems.

Lemma 2. If (�x; �y) 2 Rn � R
m satis�es (20){(22), J(�y) � J(y�) for some y� 2 S�D

and SCA holds, then (�x; �y) belongs to S�.

Proof. We use Lemma 1 with J = J(�y). Clearly (�x; �y) 2 VJ so that, by Lemma 1,

(�x; �y) 2 S(T;Rn �UJ) with T as in (48). Note that y� 2 UJ because J � J(y�). Take
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x� 2 S�P . Thus, (x�; y�) belongs to S�, and therefore it solves VIP(T ,Rn � R
m
+ ), so

that, a fortiori, it solves VIP(T ,Rn � UJ). Thus, both (�x; �y) and (x�; y�) belong to

S(T;Rn � UJ). For t 2 [0; 1], de�ne

x(t) = �x+ t(x� � �x);

y(t) = �y + t(y� � �y): (93)

By convexity of S(T;Rn � UJ), (x(t); y(t)) 2 S(T;Rn � UJ). By Lemma 1,

(x(t); y(t)) belongs to V , i.e. it satis�es (20){(22) for all t 2 [0; 1]. We need to

show that it also satis�es (23) for t = 0. For i 2 I(�y), �yi > 0, implying, in view

of (93), y(t)i > 0 for all t 2 [0; 1), so that, by (22) with (x; y) = (x(t); y(t)), we

get fi(x(t)) = 0 for all t 2 [0; 1) and all i 2 I(�y). Since J = J(�y) � J(y�), for

i 2 J we have y(1)i = y�i = 0, so that, by SCA, fi(x(1)) = fi(x
�) < 0. Let

A = ft 2 [0; 1) : fi(x(t)) < 0 for all i 2 Jg. By continuity of the fi's, A is nonempty.

Note that for t 2 A we have fi(x(t)) � 0 for all i, i.e. (23) holds, and since (x(t); y(t))

satis�es (20){(22) for all t 2 [0; 1], we get that (x(t); y(t)) 2 S� for all t 2 A. Let
�t = inf A. By continuity of the fi's again, (x(�t); y(�t)) 2 S�. We claim that �t = 0. If
�t > 0, then, by de�nition of A and �t, we have fi(x(�t)) = 0 for some i 2 J = J(�y). Since

y(t)i = 0 for all t 2 [0; 1] and all i 2 J by (93), SCA is violated at (x(�t); y(�t)). Thus

the claim is established, and therefore (�x; �y) = (x(0); y(0)) = (x(�t); y(�t)) 2 S�.
Next we present the convergence result under SCA.

Theorem 9. Assume that S� 6= ;, that xk as de�ned by (60) exists for all k and that

SCA holds. Then,

i) All cluster points of the sequence fxkg generated by GALB (i.e. by (59){(61)),

if any, belong to S�P .

ii) The sequence fzkg = f(xk; yk)g generated by GDALB (i.e. by (63){(65)) con-

verges to some point �z = (�x; �y) 2 S�.

Proof. i) Let �x be a cluster point of fxkg. By Theorem 7, limk!1 yk = y� 2 S�D
and (�x; y�) satis�es (20){(22). The result follows from Lemma 2 with �y = y�.

ii) Let �z = (�x; �y) be a cluster point of fzkg, which exists by Corollary 1. (�x; �y)

satis�es (20){(22) and �y 2 S�D by Corollary 1. Thus we may apply Lemma 2 and

conclude that �z 2 S�. Let fz`kg be a subsequence of fzkg such that limk!1 z`k =

�z. limk!1Dc(�z; z
`k) = 0 by B4. Since �z 2 S�, fDc(�z; z

k)g is nonincreasing by

Theorem 5(i). Thus, fDc(�z; z
k)g is a nonnegative and nonincreasing sequence with a

subsequence which converges to 0. It follows that limk!1Dc(�z; z
k) = 0, and therefore

limk!1 zk = �z 2 S� by B5.

SCA is a rather strong assumption. It implies, for instance, uniqueness of the dual

solution in the di�erentiable case, as the following proposition shows.
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Proposition 3. If S� is nonempty, the fi's are continuously di�erentiable (0 � i �
m) and SCA holds then S�D is a singleton.

Proof. Looking at (22) for a �xed x� 2 S�P , it follows easily from SCA that for all

y 2 S�D it holds that J(y) = fi : fi(x�) < 0g. Assume that y; y0 belong to S�D with

y 6= y0. Since S�D is the intersection of Rm+ with the a�ne manifold L = fy 2 R
m :

rf0(�x) +
Pm

i=1 yirfi(�x) = 0; fi(�x)yi = 0 (1 � i � m)g, the intersection of the line

through y, y0 with the relative boundary of S�D provides a point in S�D with more zero

components than y, y0.

Proposition 3 does not hold in the nondi�erentiable case. For instance, for the

two dimensional problem minkx+ ek22 subject to x1 � 0, 2x2 � kx� ek
1
� 1, with

et = (1; 1), one gets, after some subdi�erential calculus, that S�p = f(0; 0)g, and that

S�D is the whole segment between (2=3; 2) and e, contained in R
2
++ , so that SCA

certainly holds. Nevertheless, Proposition 3 indicates that it is worthwhile to look for

convergence results without SCA. In this case we will obtain only so called ergodic

results, i.e. they refer to a sequence f�xkg of weighted averages of the xk's, de�ned as

�xk =

kX
`=1

�k`x
`; (94)

with

�k` =
��1`�1Pk�1
j=0 �

�1
j

: (95)

We will prove that for GDAL, the sequence f�xkg is bounded and all its cluster

points belong to S�P if S� 6= ;. The same result is proved for the sequence f�xkg
generated by GAL under the assumption that fxkg is bounded. A weaker ergodic

result on the sequence f�xkg generated by GALB can be found in Lemma 8.10 of [28],

where optimality of the cluster points of f�xkg is proved, but under the asumption

that (�x; y�) satis�es (22), where �x is a cluster point of f�xkg and y� = limk!1 yk.

We prove, using Lemma 1, that this condition indeed holds, and thus needs not be

required as an assumption. We need �rst a preliminary lemma on weighted averaged

sequences.

Lemma 3. Take fvkg � R
p , �k` 2 R++ (k � 1, 1 � ` � k) such that

Pk
`=1 �k` = 1

for all k � 1, limk!1 �k` = 0 for all ` � 1, and de�ne �vk =
Pk

`=1 �k`v
`. Then

i) If fvkg is bounded then f�vkg is bounded.

ii) If v� = limk!1 vk then v� = limk!1 �vk.

iii) If fvkg is bounded, H is the set of its cluster points and bH is its convex hull,

then all cluster points of f�vkg belong to bH.
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Proof. (i) and (ii) are elementary. We proceed to prove (iii). For v 2 Rp , W � R
p ,

let d(v;W ) be the Euclidean distance from v to W . If W is convex then d(�;W ) is

convex. Since fvkg is bounded, limk!1 d(vk ; H) = 0. Since H � bH , we have that

0 � d(vk ; bH) � d(vk ; H) for all k. It follows that

lim
k!1

d(vk ; bH) = 0: (96)

Then

0 � d(�vk ; bH) = d

� kX
`=1

�k`v
`; bH� �

kX
`=1

�k`d(v
k; bH); (97)

using convexity of bH and of d(�; bH). By (ii) and (96), limk!1

Pk
`=1 �k`d(v

`; bH) = 0,

and then limk!1 d(�vk; bH) = 0 by (97). The result follows.

The next theorem presents ou ergodic convergence result.

Theorem 10. Let fzkg = f(xk; yk)g be the sequence generated either by GALB or by

GDALB, and f�xkg the sequence de�ned by (94){(95). In the case of GALB, assume

that xk as de�ned by (60) exists for all k and that fxkg is bounded. Then all cluster

points of f�xkg belong to S�P .

Proof. We consider also the auxiliary averages �yk =
Pk

`=1 �k`y
`, with �k` as in (95),

and de�ne �zk = (�xk ; �yk). Note that fzkg is bounded, by Corollary 1 in the case of

GDALB, and by Theorem 7(i) and boundedness of fxkg in the case of GALB. Let H

be the set of cluster points of fzkg, bH its convex hull and J = \y2S�
D

J(y). Take anyez = (ex; ey) 2 H . It follows easily from Corollary 1 or Theorem 7(i) that

J(ey) = J: (98)

Now we apply Lemma 1 with this choice of J . By Corollary 1 or Theorem 7(i),ez 2 V , and then ez 2 VJ by (98). By Lemma 1, ez 2 S(T;Rn � UJ) with T as in (48),

i.e. we have proved that H � S(T;Rn � UJ). Since S(T;Rn � UJ) is convex, we

get that bH � S(T;Rn � UJ). By Lemma 1 again, bH � V . By Lemma 3(i), f�zkg is

bounded. Let z� = (x�; y�) be a cluster point of f�zkg. Since, by (95),
Pk

`=1 �k` = 1

for all k, and also limk!1 �k` = 0 for all `, because 0 � �k` � �=(k�`), we can apply

Lemma 3(iii) and conclude that z� 2 bH � V . Thus, (x�; y�) satis�es (20){(22). In

order to prove that x� belongs to S�P , it su�ces to show that (x�; y�) also satis�es

(23), which we do next.

By (57) or (70), for all ` � 0,

h0i(y
`+1
i )� h0i(y

`
i ) = ��1` fi(x

`+1) (1 � i � m): (99)
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Summing (99) with ` between 0 and k � 1, and dividing by
Pk�1

j=0 �
�1
j , we get

h0i(y
k
i )� h0i(y

0
i )Pk�1

j=0 �
�1
j

=

kX
`=1

�k`fi(x
`) � fi

� kX
`=1

�k`x
`

�
= fi(�x

k); (100)

using convexity of fi in the inequality and (94) in the last equality. Since �j � � for

all j � 0, we get from (100)

fi(�x
k) �

��h0i(yki )� h0i(y
0
i )
��Pk�1

j=0 �
�1
j

� �

k

��h0i(yki )� h0i(y
0
i )
�� : (101)

Now we look at a subsequence f�xjkg of f�xkg converging to x�. Without loss

of generality, i.e. re�ning the subsequence if necessary, we may assume that fyjkg
converges, say to �y, because fykg is bounded. If �yi > 0, then limk!1 h0i(y

jk
i ) = h0i(�yi)

and thus the right hand side of (101) converges to 0 along the subsequence because

of the denominator. It follows that fi(x
�) � 0. If �yi = 0, then limk!1 h0i(y

jk
i ) =

limt!0+ h
0

i(t) = �1 by B6', so that the left hand side of (100) is negative along the

subsequence for large enough k, and we conclude again that fi(x
�) � 0. We have

proved that fi(x
�) � 0 for all i, i.e. that (x�; y�) satis�es (23). It follows that x�

belongs to S�P .

We remark that, in view of (94), (95), �xk+1 can be computed as

�xk+1 = �k�x
k + (1� �k)x

k+1;

with

�k =

�
1 +

1

�k�k

��1
;

where f�kg is de�ned through the recurrence

�1 = ��10 ; �k+1 = �k + ��1k :

Thus, in actual implementations the additional cost of computing �xk (in addition to

xk, yk) is negligeable, and we can look at f�xkg as the primal sequence generated by

the algorithm, with fxkg being just an auxilary sequence. Nevertheless, the issue of

primal optimality of the cluster points of fxkg is an interesting mathematical question

which remains as an open problem.

Finally, we comment on the ergodic convergence results available for the sequence

fxkg generated by GAL�. For the case of �(t) = t log t�t+1, i.e. � as in Example 4 of

Section 6, an ergodic convergence result for the sequence fxkg generated by (89){(90)
was proved in [47]. This is a particular case of Theorem 10, since this �-divergence

is also a Bregman distance. For �(t) = t � log t � 1, i.e. � as in Example 5 of

Section 6, an ergodic convergence result with an averaged sequence fexkg de�ned with

a formula more involved that (94){(95) was established in [26], and then optimality

of the cluster points of f�xkg as de�ned in (94){(95) was proved in [40]. This result
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was later extended to a larger class of �-divergences in [38]. More precisely, it is

required that � belong to �4 and furthermore that log
�
��(t)

�
be convex. This is a

rather restrictive assumption, which does not hold for the �-divergences in Examples

5 and 6 of Section 6, for instance. The results in [26] and [40] have no intersection with

Theorem 10, since they correspond to a �-divergence which is not a Bregman distance.

The same is true for the results in [38], excepting for the case of �(t) = t log t� t+1.

13 Examples of Generalized Augmented Lagrangians

We give next the explicit expressions of the iterative formulae of GALB (i.e. of (60),

(61)) for some speci�c choices of the Bregman function h.

Example 7: h(y) =
Pm

i=1 yi log yi, with the convention that 0 log 0 = 0, i.e. as in

Example 2 of Section 5. For this h the iterative formulae of GALB are

xk+1 = argminx2Rn

�
f0(x) + �k

mX
i=1

yki exp
�
fi(x)=�k

��
; (102)

yk+1i = yki exp
�
fi(x

k+1)=�k
�
: (103)

This is the exponential multipliers method (see [3]) and the results of Theorem 10 for

this particular case have been established in [47].

Example 8: h(y) =
Pm

i=1

�
yi� y�i

�
with � 2 (0; 1), i.e. h as in Example 3 of Section

5 with � = 1. The iterative formulae for GALB with this h are

xk+1 = argminx2Rn

�
f0(x) + (1� �)�k

mX
i=1

(yki )
�

�
��k

��k � (yki )
1��fi(x)

��(1��)�
;

(104)

yk+1i = yki

�
��k

��k � (yki )
1��fi(xk+1)

�1=(1��)
: (105)

The choice � = 1=2 makes (104) and (105) specially simple. For the general Breg-

man function in Example 3 of Section 5, i.e. with � > 1, there are no explicit formulae

for h�i , and henceforth for bL, excepting for � = 3=2, � = 1=2, which we ommit here

for the sake of conciseness.

Example 9: h(y) = �Pm
i=1 log yi, which is just the logarithmic barrier, widely

used in interior point methods for convex programming. In this case Dh(y; y
0) =Pm

i=1[(yi=y
0

i) � log(yi=y
0

i) � 1], used in statistics under the name of Itakura-Saitu

distance (see e.g. [12]). The iterative formulae of GALB for this h are

xk+1 = argminx2Rn

�
f0(x)� �k

mX
i=1

log
�
1� yki fi(x)=�k

��
; (106)
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yk+1i = yki

�
�k

�k � yki fi(x
k+1)

�
: (107)

The sequence f(xk; yk)g generated by (106){(107) starting with y0 2 Rm++ is well

de�ned, but the convergence results for GPPB do not apply to this case because h is

not exactly a Bregman function, since the hi's (and not just the h0i's) diverge at 0, so

that B2 fails. Thus, for instance, Dc(z
�; zk) in (76) with z� = (x�; y�) is not de�ned if

y�i = 0 for some i. Convergence results for this h remains as an open problem (some

results on the proximal point method with this h, applied directly to (P ), rather than

to (D), appear in [22]).

Next we present three examples of the iterative formulae of GAL�, i.e. of the

methods given by (89){(90), for speci�c choices of �.

Example 10: We consider GAL� with �(t) = t log t�t+1, i.e. with � as in Example

4 of Section 6. This particular case of GAL� coincides with GALB as in Example 8.

Example 11: We consider GAL� with � as is Example 5 of Section 6. The iterative

formulae of GAL� for this � are

xk+1 = argminx2Rn

�
f0(x)� �k

mX
i=1

yki log
�
1� fi(x)=�k

��
; (108)

yk+1i = yki

�
�k

�k � fi(xk+1)

�
: (109)

This is one of the modi�ed barrier methods presented in [37]. The ergodic results

in [40] apply to the sequence fxkg generated by (108){(109).

Example 12: We consider GAL� with � as in Example 6 of Section 6. The iterative

formulae of GAL� for this � are

xk+1 = argminx2Rn

�
f0(x) � �k

mX
i=1

yki
�
1� fi(x)=�k

��1�
; (110)

yk+1i = yki

�
�k

�k � fi(xk+1)

�2
: (111)

To our knowledge, no convergence results are available for the sequence fxkg de-
�ned by (110){(111), since �� is not log-convex for this �, and so the results of [38]

do not apply to this case.

Regarding GDALB, for the same h's as in Examples 7{9, formulae (103), (105)

and (107) remain unchanged, while in formulae (102), (104) and (106) the only change
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is an additional term �kDg(x; x
k) in the minimands. Since only B1{B3 are required

for g, any continuously di�erentiable, strictly convex and coercive function de�ned on

the whole Rn will do the job, but the most sensible choice seems to be a quadratic, as

in Example 1 of Section 5, e.g. g(x) = � kxk2 with � > 0, in which case the additional

term is just �k�


x� xk



2.
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