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Abstract

The Augmented Lagrangean Relaxation (ALR) method is one of the most powerful techniques

to solve the Short-Term Hydrothermal Coordination (STHC) problem. A crucial step when

using the ALR method is the updating of the multipliers. In this paper we present a new

multiplier updating procedure: the Gradient with Radar Step (GRS) method. The method

has been successfully tested by solving medium-scale examples of the STHC problem.

Keywords: Augmented Lagrangean Relaxation (ALR) method, Classical Lagrangean Re-

laxation (CLR) method, Gradient with Radar Step (GRS) method, Short-term Hydrother-

mal Coordination (STHC) problem, Variable Duplication (VD) method, Block Coordinate

Descent (BCD) method.

1 Introduction

The problem dealt with below is called the Short-Term Hydrothermal Coordination

(SHTC) problem. The objective of this problem is the optimization of electrical pro-

duction and distribution, considering a short-term planning horizon (from one day to

one week). Hydraulic and thermal plants must be coordinated in order to satisfy the

customer demand of electricity at the minimum cost and with a reliable service.

The model for the STHC problem presented here considers the thermal system,

the hydraulic system and the distribution network. The starting point is the paper by

Batut and Renaud [1] and therefore we use Variable Duplication plus the Augmented

Lagrangean Relaxation (ALR) method. The method used by Batut and Renaud is

�These authors were supported by the CICYT (Grant TAP96-1044).
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improved theoretically and practically. >From the theoretical point of view, the con-

servative Auxiliary Problem Principle (see [1]) is replaced by the Block Coordinate

Descent Method (see [2]) that shows to be faster. From the practical point of view,

an e�ective software package designed to solve the Optimum Short-Term Hydrother-

mal Scheduling Problem, (see [6]), is incorporated in order to speed up the whole

algorithm. A new multiplier updating method is introduced and compared with the

classical multiplier method [2].

This paper is divided into the following sections:

1. Introduction.

2. Formulation of the problem.

3. Modeling the STHC problem.

4. Solution algorithm.

5. The Gradient with Radar Step (GRS) method.

6. Solving the STHC problem.

7. Computational tests.

8. Conclusions.

9. References.

2 Formulation of the Problem

The optimization problems here considered are of the following type (P1):

min f(x) = Chtd(x) + Cm(x)

s:t: x 2 Dhtd

x 2 Dm

9=
; (1)

Where:

� Dhtd represents the domain de�ned by the constraints that couple the hydraulic,

thermal and distribution systems: load constraints, spinning reserve constraints,

etc.

� Dm represents the domain of the management for the thermal units.

� Chtd(x) represents the costs associated with Dhtd.

� Cm(x) represents the costs associated with Dm.
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3 Modeling the Short-Term Hydrothermal Coordination (STHC)
Problem

The general expression of the STHC problem (P1) could be developed in several dif-

ferent ways. The approach adopted in this paper follows the so called Coupled Model

presented in [6]. This model takes into account the hydroelectric energy generation

system together with the thermal system and the transmission network. The variable

vector x of the problem (P1) splits into three di�erent vectors, x
H
for the variables

related with the hydroelectric system (volume, discharges and spillages of each reser-

voir), x
T
for the thermal variables (power output and spinning reserve of each thermal

unit), and variables x
E
which account for the power 
ow through the electric trans-

mission network. In the Coupled Model the constraints relating all these variables

(domain Dhtd of problem (P1)) are expressed through a network 
ow model with side

constraints:
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where

� (2): are the network constraints associated with the so-called Hydro-Thermal-

Transmission Extended Network (HTTEN). The HTTEN integrates the repli-

cated hydro network, which accounts for the time and space coupling between

the reservoirs of the river basin, the thermal equivalent network which de�ne

the relation between the power output and the spinning reserve level of each

thermal unit, and the transmission network, which formulates the conservation

of the power 
ow at the busses of the transmission system.

� (3): these nonlinear side constraints de�nes the injection of the hydroelectric

generation (a nonlinear function of the variables x
H
) into the appropriate busses

of the transmission network. As it will be explained later, the solution procedure

will be based on a successive linearization of these constraints.

� (4),(5): These two sets of linear side constraints impose the satisfaction of the

incremental and decremental spinning reserve requirements of the whole system.

� (6): this last set of linear side constraints is the formulation of the Kircho� Volt-

age Law. These constraints, together with the power 
ow conservation equations

formulated in (2), represent a dc approach to the transmission network.

c
 Investigaci�on Operativa 1999



66 Beltran, C. and Heredia, J. F. � Short-Term Hydrothermal Coordination ...

� (7),(8),(9): upper and lower bounds to the variables.

The formulation of the domain Dhtd as a network 
ow problem with side con-

straints allows one the use of specialized network optimization codes. Also, the 
exi-

bility of this model is such that other relevant system constraints can be easily added,

for instance, security constraints and emission constraints (See [3]).

The thermal management domain Dm of the problem (P1) deals with the con-

straints of the unit commitment problem, namely, the minimum down time and max-

imum up time of the thermal units.

The �rst term of the objective function of (P1), Chtd(x), represents the 50 % of

the cost of the fuel consumption of the thermal units, and it is modeled as a quadratic

function of the power output of each thermal unit. This term could also include an

estimation of the cost of the power losses through a quadratic function of some of

the variables x
E
. The second part, Cm(x), includes the remaining 50 % of the fuel

cost, the start-up and shut-down costs of the thermal units, and depends only on the

thermal variables x
T
.

4 Solution Algorithm

Nowadays the Lagrangean Relaxation (LR) method is the most widespread proce-

dure to solve the STHC problem. The initial Classical Lagrangean Relaxation (CLR)

method was improved by the Augmented Lagrangean Relaxation (ALR) method dur-

ing the past decade (see [1,2,8,9]), although recent advances in the multiplier updating

for the CLR method (cutting plane, bundle methods, etc.) have brought this classical

method back into fashion (see [10,11,12]).

Some advantages of the ALR method are (see [1,2,8]):

� In the ALR and in the CLR method we maximize a concave function: the dual

function.

� The ALR method allows us to obtain a saddle-point even in cases where the

CLR method presents a duality gap. The solution of the STHC problem by the

CLR method usually yields an unfeasible primal solution xk due to the duality

gap, whereas in the ALR method a solution of the dual problem provides a

feasible primal solution.

� The ALR method is a mixture of the CLR method with the penalty method.

On the one hand, the penalty term avoids the typical oscillations of the CLR

method. On the other hand, the Lagrangean term avoids the typical ill condi-

tioning of the penalty method, which usually requires large penalty terms.

� Using the CLR method, the di�erentiability of the dual function cannot be

ensured and therefore nondi�erentiable methods must be applied in the CLR

method. This di�culty can be overcome if an augmented Lagrangean is used,
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since the dual function qc is di�erentiable for an appropriate c. Thus, the

multipliers can be updated using \large steps".

The weaknesses of the ALR method are:

� The quadratic terms introduced by the augmented Lagrangean are not separa-

ble. If we want to solve a problem by decomposition, some methods, such as the

Auxiliary Problem Principle, (see [4]), or, as in our case, the Block Coordinate

Descent method, (see [2]), must be used. However, the CLR method gives a

separable Lagrangean.

� The multiplier updating is done in a heuristic way, (see [2]), that needs to be

tuned.

�k+1 = �k + ckrqc(�k) (10)

We introduce a new multiplier updating procedure that completely overcomes

this di�culty: the Gradient with Radar Step (GRS) method.

5 The Gradient with Radar Step (GRS) Method

The objective of this method is to maximize a di�erentiable and concave function

q(�) without constraints. This method uses the same information as the cutting

plane method but in a di�erent way. The tangent planes obtained in the course of the

optimization give us a �rst order approximation of q(�) and the cutting plane method

directly optimizes these successive approximations of q(�). Alternatively, the GRS

method uses the approximation to q(�) in order to compute the step length for an

ascent direction (such as the gradient). Although convergence of the GRS method has

not yet been proved, experience shows a very good behavior regarding convergence.

The geometrical intuition of the GRS method is displayed in the pictures below.

In the �rst situation, given that no previous stopping tangent planes exist, move �n
one step in the gradient direction:

TPq

TP

λ λ λ
λ

0

1

0 1 2

(λ)

In the second situation, given that there is at least one previous stopping tangent

plane, move �n up to the �rst stopping tangent plane in the gradient direction. In
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the picture below, �3 is given by the intersection of TP2 with TP1, the �rst stopping

plane.

TPTPq (λ) 0

TP1

2

λ
λλ 23

A rough draft of the GRS method is given below:

Algorithm GRS

* [Method.] Gradient with Radar Step.

* [Objective.] It solves the following problem, where q(�) is a concave and

di�erentiable function and numerical line-search cannot be applied (e.g.,

the dual function):

max

� 2 Rm

q(�)
(11)

* [Input.] �0 initial point.

* [Output.] �� optimizer of q(�).

Step 0 [Initialize.] Set n = 0.

Step 1 [Compute the gradient vector.] Compute gn := rq(�n). Let TPn be the

�rst order approximation of q(�) at the point (�n; q(�n)) i.e., TPn is the

tangent plane de�ned by gn. Store the tangent plane TPn.

Step 2 [Check the stopping criterion.] If gn = 0 then stop. �n is the optimizer of

q(�).

Step 3 [Compute the step length]. Move over TPn in such a way that �n+1 moves

along the straight line �n+1 = �n + � � gn, with � > 0. Keep moving up to

the �rst stopping tangent plane TPk with k < n. This means we stop the

advance of �n+1 for a value of �, say �n. If no such stopping plane exists

set �n = c, the penalty parameter.

Step 4 [Truncate the step length by the multiplier method step.] Set e�n =

minf�n; cg.

Step 5 Compute �n+1 = �n + e�ngn. Set n = n+ 1 and go back to Step 1.
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Proposition GRS step

* [De�nitions.]

n GRS iteration index.

�n current iterate.

gn := rq(�n).

qn := q(�n).

TPk � yk(�) = qk + gk(� � �k) tangent planes at the point (�k ; qk)

(k = 0; � � � ; n� 1).

�n+1(�) := �n + � � gn line de�ned by the point �n and the vector gn.

(�n;k ; yn;k) intersection point of the line yn (�n+1(�)) with the tangent plane

TPk.

�n;k step length from �n to �n;k, i.e., �n;k = �n + �n;k � gn.

�n step length of the GRS method, i.e., �n+1 = �n + �n � gn.

* [Hypothesis.] q(�) is a concave and di�erentiable function.

* [Thesis.] The step length �n of the previous algorithm GRS can be computed

as follows. First, compute

�n;k :=
qk � qn + (�n � �k)

0gk

(gn � gk)0gn
k = 0; � � � ; n� 1 (12)

and then,

�n := minf�n;k : �n;k > 0 k = 0; � � � ; n� 1g (13)

A proof of the proposition above can be found in [13].

As we will see en the next section, in the resolution of the STHC problem we only

relax the equality constraint of the primal problem x = ex in order to get a dual

problem with no constraints upon the dual variables (multipliers). Therefore, in our

case, the objective of the ALR method is to maximize a di�erentiable and concave

function (the dual function qc(�)) without constraints, characteristics fully coincident

with the requirements of the GRS method. Note that in the case of the dual function

a classical line-search procedure would be computationally too expensive. The main

features of the GRS method are:

� No parameter tuning needs to be done.

� The GRS method, unlike the classical multiplier method, is based on a direct

knowledge of the dual function given that it uses a �rst order approximation of

the dual function.

� The information used by the GRS method is computationally very cheap in

the Lagrangean framework because the gradient of the dual function is given

by the unfeasibility of the relaxed constraint, i.e., rqc(�k) = h(xk), where
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h(x) is the relaxed equality constraint (in the STHC problem rqc(�k) = xk �exk). The consequence of this almost free knowledge of the dual function is a

computationally e�cient and fast updating method.

6 Solving the Short-Term Hydrothermal Coordination (STHC)
Problem

We follow and improve the algorithm described by Batut and Renaud [1] in the so-

lution of the STHC problem (1). This algorithm uses the Augmented Lagrangean

Relaxation (ALR) and Variable Duplication (VD) methods, and previous software

used to solve the dispatching problem and the optimal power 
ow can also be incor-

porated. To deal with the inseparable Lagrangean, instead of the Auxiliary Problem

Principle used by Batut and Renaud we use the Block Coordinate Descent method,

that shows to be faster (see [13]).

� First, the Variable Duplication method consists of exactly what the name sug-

gests: the vector of the variables x is duplicated, resulting in ex, and then the

equality constraint x = ex is added. Thus, we solve the following transformation

of (1), which is equivalent to problem (P1):

min f(x; ex) = Chtd(x) + Cm(ex)
s:t: x 2 Dhtdex 2 Dm

x = ex

9>>=
>>; (14)

� Second, the induced dual problem is:

max

� 2 Rn

8>>>><
>>>>:

min Lc(x; ex; �)
s:t: x 2 Dhtd

ex 2 Dm

9>>>>=
>>>>;
; (15)

where

Lc(x; ex; �) := Chtd(x) + Cm(ex) + �0(x� ex) + ckx� exk2 (16)

� Third, Lc is not a separable function, thus in order to minimize it in a separable

way we �rst do some manipulations.

Lc(x; ex; �) = Chtd(x) + Cm(ex)
+�0x� �0ex+ c

2
kx� exk2 + c

2
kx� exk2 =

=
�
Chtd(x) + �0x+ c

2
kx� exk2�

+
�
Cm(ex)� �0ex+ c

2
kx� exk2�

(17)
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As we can see in (17) Lc consists of two almost separable members in x and ex except

for the quadratic term kx � exk2. In the frame of the Block Coordinated Descent

(BCD) method, we split Lc into two functions: one, Ln
c (x; �n), to be minimized in

the domain Dhtd, and the other eLn
c (ex; �n), to be minimized in Dm by �xing one of

the vectors x or ex each time. More precisely,

Ln
c (x; �n) := Chtd(x) + �0nx+

c

2
kx� exnk2; (18)

eLn
c (ex; �n) := Cm(ex)� �0nex+ c

2
kxn+1 � exk2; (19)

where exn and xn+1 are iterates of the decision variables ex and x respectively. Then in

the Augmented Lagrangean Relaxation (ALR) algorithm that solves the dual problem

(15) the minimization of the augmented Lagrangean over Dhtd and Dm is replaced by

two subproblems, one in each domain:

� Hydrothermal subproblem.

min Ln
c (x; �n)

s:t: x 2 Dhtd

9=
; (20)

� Thermal subproblem.

min eLn
c (ex; �n)

s:t: ex 2 Dm

9=
; (21)

Algorithm MACH

Let us suppose we have the following information available: an initial estimate of the

Lagrange multipliers �0; a penalty parameter c; a positive integer K, which serves

as an upper bound to the number of iterations of the Block Coordinated Descent at

each minimization of the aumented Lagrangean; a positive integer N, which serves as

an upper bound to the number of Lagrange multiplier updates; an initial point x00 of

the domain Dhtd and an initial point ex00 of the domain Dm; the numerical tolerances

�1, �2, �3 > 0. Then the algorithm proposed, called MACH (from \Modelo Acoplado

de Coordinaci�on Hidrot�ermica"), is:

� MACH0.- [Initialize.] Set n = 0 and k = 0.

� MACH1.- [Check the stopping criterion.] If the gradient of the dual function

is small enough, i.e., kx0n � ex0nk < �1 then stop. The algorithm terminates with

(x0n; ex0n; �n) as a solution. If n > N the algorithm has failed.
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� MACH2.- [Solve the hydrothermal subproblem.] With xkn as an initial point

and exkn as a �xed vector, execute a procedure to solve the following subproblem:

min
x�Dhtd

Ln
c (x) = min

x�Dhtd

h
Chtd(x) + �0nx+

c

2
kx� exknk2

i
(22)

including security measures to deal with unboundedness. Let xk+1
n be the cal-

culated solution.

� MACH3.- [Solve the thermal subproblem.] With exkn as an initial point and

xk+1
n as a �xed vector, execute a procedure to solve the following subproblem:

minex�Dm eL
n
c (ex) = minex�Dm

h
Cm(ex)� �0nex+ c

2
kxk+1

n � exk2i (23)

including security measures to deal with unboundedness. Let exk+1
n be a solution.

� MACH4.- [Repeat MACH2 and MACH3 until no progress can be done.]

If (k � K) then go to step 5.

If

kxk+1
n � xknk > �2 or kexk+1

n � exknk > �3 (24)

then set k = k + 1 and go back to MACH2.

� MACH5.- [Dual variable updating.] Update the multiplier estimates using the

GRS method or the multiplier method.

�n+1 = �n + �n(x
k+1
n � exk+1

n ) (25)

� MACH6.- [Update the iteration counts.]

Set x0n+1 = xk+1
n , ex0n+1 = exk+1

n , n = n+ 1 and k = 0. Go back to MACH1.

One of the advantages of the Variable Duplication framework is the possibility of in-

corporating preexisting software. In step MACH2 the minimization of the augmented

Lagrangean subject to the constraints (2) to (9) is needed. This is a nonlinear network


ow problem with side constraints which can be solved either with general purpose

optimization packages or with specialized procedures. The implementation reported

in this paper is based on the specialized code NOXCB (see [5]). This code imple-

ments an active set method which exploits the network structure through primal

partitioning techniques, (see [7]), to solve the nonlinear network problem with linear

side constraints. To handle the nonlinear constraint (3) a successive linearization

method presented in [6] is used. In this method, a sequence of subproblems are solved

in which the nonlinear constraints (3) are linearized over the optimal solution of the

previous subproblem. The linearizations stop when a given convergence criterion is

reached. Furthermore, in the future this framework will allow the incorporation of

new packages, for example Interior Point based software to solve step MACH2.

In step MACH3 a classical forward dynamic programming procedure has been imple-

mented. In our opinion, the characteristics of the subproblem (21) (binary variables

plus separability) make the dynamic programming procedure one of the best options.
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7 Computational Tests

So far we have tested the MACH package, considering the hydraulic and thermal

systems without the distribution network, although the software developed can incor-

porate the distributing network. The CPU times correspond to a Sun/Ultra2 2200

workstation with 200 MHz clock, 256 Mbytes of main memory, 68 M
ops Linpack,

14.7 Specfp95 and 7.8 Speccint95.

In the table below we present 6 instances of the STHC problem that range from

24 to 1848 binary variables. We consider examples which range in size from very

small (6 intervals, 2 reservoirs and 4 thermal units) up to medium (168 intervals,

4 reservoirs and 11 thermal units). The parameter K (upper bound to the number

of iterations of the Block Coordinated Descent method at each minimization of the

augmented Lagrangean) has been set equal to 0. The numerical tolerances, �1, �2 and

�3, have been set equal to 10
�4. The penalty parameter c used in all cases has been 10.

Case ni nr nt ncon nbin

0400601 6 2 4 138 24

0404801 48 2 4 1104 192

0704801 48 2 7 1680 336

0216801 168 4 2 3360 336

0716801 168 4 7 6720 1176

1116805 168 4 11 9408 1848

Table 1: Description of a sample of STHC instances.

Legend:

Case Label of the problem case.

ni Number of intervals (1 interval = 1 hour).

nr Number of reservoirs.

nt Number of thermal units.

ncon Number of continuous variables.

nbin Number of binary variables (on/o� variables).

The results obtained using the MACH package with the multiplier method are shown

in table 2. We used a constant penalty parameter version (ck = c in equation (10)).
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Case iter t cost %inf

0400601 9 9.3 13.6 1:0 � 10�4

0404801 6 7.7 1.0 1:2 � 10�6

0704801 6 7.6 1.1 1:3 � 10�6

0216801 2 26.1 4.6 4:0 � 10�4

0716801 � 2700 � �

1116805 4 311 85.8 9:0 � 10�4

Table 2: Solution using the multiplier method.

Legend:

iter Number of multiplier updating iterations.

t CPU time (in seconds).

cost Optimal cost (in millions of pesetas).

%inf Relative unfeasibility in %.

If kx� exk
1
:= maxfjxj � exj j : j = 1; � � � ; ng =: jx0 � ex0j then %inf :=

100
kx�exk1

0:5�( jx0j+jex0j )

� Data not available.

The results obtained using the MACH package with the GRS method are shown in

table 3.

Case iter t cost %inf

0400601 10 10.3 13.6 9:8 � 10�5

0404801 6 8.7 1.0 3:2 � 10�6

0704801 7 8.5 1.1 9:6 � 10�8

0216801 7 32.8 4.5 4:0 � 10�8

0716801 10 355.1 3.3 4:0 � 10�8

1116805 6 370.3 85.8 2:0 � 10�5

Table 3: Solution using the GRS method.

A sample of the performance of the MACH package is given in the tables 2 and 3.

The main points of the tables are:

1. Usually, both methods reach an optimum with 10 or fewer multiplier updates

against the 50 or more reported by Batut and Renaud (see [1]). In our opinion,

this is due to the use of the Block Coordinate Descent method instead of the

conservative Auxiliary Problem Principle method (see [13]). In consequence

the CPU time required to solve the UCCT problem falls drastically in such a

way that problems with more than 1000 binary variables (cases 0716801 and

1116805) are solved within 6 minutes.
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2. Unlike the Classical Lagrangen Relaxation, this method yields ready-to-use fea-

sible solutions since the relative unfeasibility (% inf) is almost null. Note that

a null relative unfeasibility implies no duality gap.

3. The performance of the compared multiplier updating methods is very similar.

On the one hand, the classical multiplier method usually reaches an optimum

with one or two iterations less than the GRS method. Furthermore, the mul-

tiplier method is computationally cheaper than the GRS method which needs

to compute n candidates for the step length �n at each iteration n. On the

other hand, we can �nd examples, as the case 0716801, where the GRS method

converged to an optimum in 355 seconds, whereas the multiplier method (with

constant penalty parameter c) did not give any solution after 45 minutes of

CPU. All in all, we can conclude that when solving the STHC problem the new

GRS method does not improve, so far, the classical multiplier method but it

can be used as an alternative method.

8 Conclusions

The Short-Term Hydrothermal Coordination (STHC) problem has been solved us-

ing the Variable Duplication plus Block Coordinated Descent method within the

Augmented Lagrangean Relaxation (ALR) framework. A new multiplier updating

method, the Gradient with Radar Step (GRS) method, has been designed and imple-

mented. Three main conclusions must be pointed out:

First, the ALR framework designed by Batut and Renaud to solve the STHC notably

improves if the Block Coordinated Descent method is used instead of the Auxiliary

Problem Principle.

Second, after our computational experience, the new GRS method does not improve,

so far, the classical multiplier method but it can be used as an alternative method.

Third, in order to solve the STHC problem the ALR method implemented in the

MACH package, represents a competitive alternative to the Classical Lagrangean

Relaxation (CLR), mainly due to the ALR method directly gives a primal feasible

solution. The CLR obtains unfeasible primal solutions that must be processed by

some heuristic procedure in order to reach feasibility.
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