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Abstract

Polyhedral Combinatorics approaches have turned out to be successful computational tools in

many hard Combinatorial Optimization problems. We present an approximation algorithm

based on linear programming formulations with binary decision variables which are a kind

of assignment variables for the classical deterministic scheduling problem of minimizing the

makespan on identical machines. The problem is known to be NP-hard in the strong sense.

The structure of the corresponding polytope is analyzed, and the strong cutting planes are

identi�ed. Computational results show that, in all tested cases, the problem can be solved

exactly.
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1 Introduction

In the classical Parallel Machines Scheduling (PMS) problem, there are n jobs and m

machines. Each job needs to be executed on one of the machines during a �xed pro-

cessing time, without pre-emption.. So, the aim is to �nd the schedule that optimizes

certain performance measure.

Many real life problems can be modeled as PMS ones. On production lines, it

is common to �nd more than one machine of each kind carrying out the production

tasks. Other examples are docks - ships, teachers - students groups, hospital assis-

tance - patients, etc. The PMS also constitutes an important issue within the �eld of

Computer Science, due to the increments in use of share time systems, or multipro-

cessor computers, which require e�cient procedures for assigning tasks. Many other

97



98 Mokoto�, E. � Scheduling to Minimize the Makespan on ...

problems could be mentioned when we speak about scarce resources, or machines,

dedicated to the production of some goods, or jobs.

The aim of this article is to present a new approximation algorithm based on Lin-

ear Programming (LP) formulations with binary decision variables that are a kind of

assignment variables for the PMS problem. We have given to polyhedral approaches

a try-out because Polyhedral Combinatorics [15] have turned out to be practically

successful computational tools in many hard Combinatorial Optimization (CO) prob-

lems like the classical Travelling Salesman Problem [14] ; [2], the problem of scheduling

to Minimize the Total Weighted Completion Time [8], etc. Using an algorithm that

combines heuristics and cutting planes techniques, we analyze the structure of the

corresponding polytope and identify the strong cutting planes. The core of the algo-

rithm is a cutting plane method, using the simplex method to solve the LP relaxations.

Computational results showed that, in many cases, the problem can be solved exactly.

In the next section, the problem statement is presented and its complexity is

analyzed. Section 3 describes the proposed algorithm. Section 4 discusses the com-

putational experience. We conclude, in Section 5, with a summary discussion on

research directions.

2 Problem Statement and Complexity Results

2.1 Notation, Formulation and Assumptions

We will use this notation in what follows:

Ji : job i; i 2 N=f1; :::; ng

Mj : machine j, j 2M=f1; :::;mg

pi: processing time of job Ji

pij : processing time of job Ji on machine Mj

Ci: completion time of job Ji

Cmax: makespan, the maximum completion time of all jobs Ji;

Cmax = maxfC1; C2; :::; Cng

xij : assignment variable

Consider a set J of n jobs Ji (i=1,...,n) to be processed, each of them on one

machine, on a set M of m machines Mj (j=1,...,m). All the jobs can be processed

on any of the m machines. We consider identical machines models, for which the

processing times of each job, pi, are independent of the machine processing it.
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The objective is to �nd an appropriate allocation of jobs from set J to machines

from set M , that would optimize a performance criterion. We are interested in the

maximum completion time criterion, Cmax; called makespan. However, there are

many other performance criteria to be considered when solving scheduling problems

([4] presents a complete classi�cation).

We will use the three parameters notation �=�=
; introduced by [6], where the

�rst �eld speci�es the machine environment, the second, the job characteristics, and

the third refers to the chosen optimality criterion. The problem at hand, is then de-

noted by P==Cmax, where P represents identical parallel machines, the jobs are not

constrained, and the objective is to produce a minimum length schedule.

A Mixed Integer Programming (MIP) formulation of the minimummakespan prob-

lem follows:

Min: y

s:t.
mP
j=1

xij = 1; 1 6 i 6 n

y-
nP
i=1

pixij > 0; 1 6 j 6 m

where the optimal value of y is the Cmax and xij = f
1 if the job i is assigned to machine j

0 if the job i is not assigned to machine j

It is enough to know just the optimal assignment, because the Cmax will be the

same for any permutation of the jobs assigned to each machine. This formulation has

m+n restrictions and mn+1 variables, being the xij variables binary and the Cmax

variable integer.

2.2 NP � hardness of P==Cmax

Even though the P==Cmax problem has been intensively investigated by a number of

researchers over the past 40 years, exact polynomial algorithms have not been found

yet. Furthermore, it is possible to verify, by reduction to the partition set problem,

that, even for n = 2, this problem is NP-hard [12]. The seminal papers [3] and [11]

lead one to suspect that it is unlikely that there exist e�cient optimization algorithms

to solve it (unless P = NP ).

3 Approximate Algorithm Proposed

3.1 Background of the Algorithm

The proposed algorithm presents a similar cutting plane scheme followed by [7], [14],

[1], [9] and [17]. The main part of these algorithms is a separation procedure that

checks whether or not a given point, the optimum solution of the last LP relaxation

solved, is feasible for the CO problem. In the latter, at least one new inequality is

c
 Investigaci�on Operativa 1999



100 Mokoto�, E. � Scheduling to Minimize the Makespan on ...

added.

Since, even for moderately sized PMS problems, the number of binary variables

and inequalities is rather large, we have to be as economical as possible in order to

keep the problem of manageable size. We have implemented a special preprocessing

procedure to accomplish it.

The above mixed integer programming formulation can be represented by the

region

F =

(
(x; y) : x 2 B

n�m
; y 2 <+ :

mP
j=1

xij = 1; 8i; y �
nP
i=1

pixij > 0; 8j

)
;

where Bn�m is the set of nm-dimensional binary vectors.

Consider the polytope P related to F ,

P = f(x; y) : x 2 <n�m+ ; y 2 <+ :
mP
j=1

xij = 1;8i; y �
nP
i=1

pixij > 0; 8jg;

The set P satis�es

F = P \ f(x; y) : x 2 B
n�m

; y 2<g :

Following the classical Polyhedral Combinatorics (see e.g. [10] or [15]), there exists

a �nite set of inequalities Ax+Dy � b, such that

min fy : (x; y) 2 Fg = min
�
y : x 2 <n�m+ ; y 2 <+; Ax+Dy � b

	
:

The system of inequalities Ax +Dy � b, called the linear description of the CO

problem, is too large and only a very small part of it could be known. Nevertheless,

even a partial linear description provides a rather powerful tool for the solution of the

CO problems. An explicit list of the constraints is not required. A method for identi-

fying valid inequalities for the original problem, starting from the solution to the LP

relaxation is the core of the Cutting Planes techniques. Iteratively, valid inequalities

are added and LP relaxations are solved, until a feasible solution to the CO problem

is obtained.

If no more cuts can generated, yet the solution is not feasible, we have to resort

to B&B to solve the problem to optimality. The PA hardly ever makes use of this

"escape".

3.2 Valid Inequalities

For a given LP solution (x0; y0) 2 P , we have to �nd valid inequalities that exclude

(x0; y0) if it is not an integer vector, that is to say, if (x0; y0) =2 F . To manage it we
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have drawn inspiration from the ideas applied to the upper-bound 
ow model [16].

Let (x0; y0) the current LP solution. For each machine j, we call Sj the set of jobs

processed, at least in part, by that machine,

Sj =
�
i 2 N : x0ij > 0

	
Let �j =

P
i2Sj

pi � y
0 be called the excess charge for the machine j, and let

S
0

j = fk 2 Sj : pk > �jg :

If x0 is not a binary vector, there is some machine j such that

P
i2Sj

pi > y
0.

The following proposition shows that for every machine j with positive excess

charge �j , and such that pk > �j for some job k in Sj , a valid inequality is generated

(such inequality is strong when 0 < x
0
kj < 1).

Proposition 1:

If �j > 0 and S
0

j 6= �, the following inequality

P
i2Sj

pixij 6 y
0 �

P
i2Sj

(pi ��j)
+
(1� xij) [1]

1. is not satis�ed by the current LP solution (x0; y0), if there is a k 2 S
0

j such that

0 < x
0
kj < 1:

2. is satis�ed by every integer solution (x�; y�) such that y� = y
0
:

(The notation (:::)+ indicates that the content enclosed in the parentheses is taken

into account only if it is greater than zero)

Proof

1. It is obvious that, for any LP solution, every machine j uses the same time

interval in operation. This implies that

P
i2Sj

pix
0
ij = y

0
:

Since there is a job k 2 Sj such that pk > �j and

0 < x
0
kj < 1,

P
i2Sj

(pi ��j)
+ �

1� x
0
ij

�
> 0:
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Thus, the LP solution (x0; y0) does not satisfy the inequality [1]:

2. Let (x�; y�) be a solution in what x� is binary and y
� = y

0
:

Let Bj =
�
i 2 Sj=x

�
ij = 0

	
;

P
i2Sj

pix
�
ij =

P
i2SjnBj

pi =
P
i2Sj

pi �
P
i2Bj

pi = y
0 +�j �

P
i2Bj

pi = y
0 � (

P
i2Bj

pi ��j):

Since
P
i2Sj

pix
�
ij can not be larger than y

� = y
0, it is necessary that

P
i2Bj

pi��j � 0:

Thus,
P
i2Sj

pix
�
ij = y

0 � (
P
i2Bj

pi ��j)
+ � y

0 �
P
i2Bj

(pi ��j)
+
:

On the other hand, since 1� x
�
ij = 1 if i 2 Bj , and 1� x

�
ij = 0 if i 2 Sj �Bj , we

have

y
0 �

P
i2Bj

(pi ��j)
+ = y

0 �
P
i2Bj

(pi ��j)
+(1� x

�
ij)�

P
i2Sj�Bj

(pi ��j)
+(1� x

�
ij) =

y
0 �

P
i2Sj

(pi ��j)
+(1� x

�
ij):

Thus, we can concludeP
i2Sj

pix
�
ij � y

0 �
P
i2Sj

(pi ��j)
+(1� x

�
ij):

�

3.3 Transitory Inequalities

For a given not integer LP solution x0 2 P , new restrictions can be generated by

considering the maximum number of jobs to be processed in each machine.

By using the same notation de�ned in subsection 3.2, the number of jobs from Sj

will be termed as sj . Then, considering the corresponding set of processing times

Pj =
�
pj1; pj2; :::pjsj

	
ordered so that

pj1 � pj2 � ::: � pjsj ,

The following succession is de�ned

Sj1 = pjsj

Sj2 = pjsj + pj(sj�1)

::::::::::::::::::::::::::::::::::::::::::

Sj1 = pjsj + pj(sj�1) + :::+ pj1=

P
i2Sj

pi
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The upper bound on the number of elements belonging to Sj ; Lj , is then de�ned

as

Lj = h� 1, Sjh > lb; and Sjh�1 � lb

Therefore, the constraint P
i2Sj

xij 6 Lj

can be added. The constraint cut o� the non feasible x0.

3.4 Preprocessing

The problem is reformulated so as to make as small as possible the di�erence between

the objective function value in the LP relaxation and that corresponding to the inte-

ger program. As in cutting planes algorithms, the preprocessing phase is an essential

part. It consists of analyzing the given problem instance in order to discover some

structure that helps to decompose the instance, to reduce its size, or to tighten the

Integer Programming formulation by turning some inequalities into equations, �xing

certain variables, etc.

For the proposed algorithm we have implemented: identi�cation of infeasibilities

and redundancies, improving bounds and coe�cients, and �xing variables. We have

only employed specially developed techniques for the PMS problem, exploiting the

features of the problem and the actual meaning of the variables.

The jobs are sorted according to

p1 � p2 � ::: � pn.

The preprocessing task presents three stages that are described in the following.

3.4.1 Fixing Variables

Due to the fact that the m machines are identical, it is possible to �x, at �rst, a job to

a certain machine. This procedure does not imply a lost of di�erent feasible solutions.

In this way a saving of m binary variables is achieved. Furthermore, one constraint

is eliminated, and m restrictions are improved by tightening their right hand sides.

3.4.2 Assigning Variables

Taking into account the value of the lower bound of Cmax; lb; infeasibilities and

redundancies could be identi�ed. For a determined value of lb, the possibility that

two jobs, with processing times pk and pl, could be assigned to the same machine is

analyzed. In other words, it is necessary to check if

pk + pl � lb.
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Beginning with the �rst two jobs, p1+p2 is compared with lb: If the sum is longer

than lb; the binary variable x21 is �xed to 0, and following the same idea described

in the above paragraph, job J2 is assigned to the machine M2, and the x2j variables,

for j = 1:::m are �xed. This procedure is applied to J2; J3; :::; Jm. The constraints

from the �rst group, formed by the �xed binary variables, disappear. The constraints

from the second group are also improved by tightening their bounds.

3.4.3 Adding Constraints

Once the two �rst stages are �nished, the actual lb for each machine could be di�erent.

If in the previous procedures the job Ji has been assigned to the machine Mj , then

the lower bound lb for this machine has decreased in pi. Then, analyzing the new

values of capacity for each machine, it is possible that a machine may not be able to

process a certain job, Jk, because of its processing time. In this case, the restriction

xkj = 0

is added. This analysis is extended to the rest of jobs and machines.

3.5 Description of the Algorithm

The procedures described in the previous sections have been imbedded into a cut-

ting planes algorithm for the P==Cmax problem. We shall now describe its general

functionality. The algorithm essentially consists in the iterative computation of lower

bounds of Cmax; starting from the successive lineal programming relaxations. The

computation of lower and upper bounds are also crucial for the fast convergence of

the algorithm.

The algorithm starts computing the lower bound by means of an improved Mc-

Naughton's lower bound. The early McNaughton's algorithm [13] solves the preemp-

tive problem P=pmtn=Cmax by

L = max

�
1
m

nP
i=1

pi; max
i
fpig

�
:

This lower bound can be improved considering that

Cmax � pm + pm+1:

Then, it is possible to tighten the bound as follows:

L1 = max

�
1
m

nP
i=1

pi; max
i
fpig ; pm + pm+1

�

Later, this bound can only be increased when the linear program is infeasible.

The upper bound is obtained by the Longest Processing Time �rst (LPT) heuris-

tic. This procedure consists on making a list according to LPT order and then, as
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with any list scheduling algorithm, assigning the uppermost job from the list to a free

or to the least loaded machine, until the list is exhausted [5].

If the lower and upper bounds coincide, the algorithm �nishes, since the LPT

heuristic has found the optimal solution. Otherwise, the iterative process of conver-

gence starts after the preprocessing has been performed.

In each iteration a linear relaxation program is solved in which Cmax is required to

be equal to the current lower bound. If the obtained solution is integer, hence feasible,

the algorithm stops and the current solution is optimal. Otherwise, the separation

procedure is executed, so new inequalities, as described above, are added to the linear

relaxation.

The developed separation procedure generates two kinds of inequalities, the valid

and transitory inequalities, described before (if new inequalities can not be generated,

we resort to the B&B algorithm). The new LP is solved and the algorithm stops if

the solution is integer. On the other hand, transitory inequalities are removed before

to solve further LP relaxations. If the LP relaxation is not feasible, the lower bound

is increased in one unit and the process, including the preprocessing phase, restarts.

4 Computational Results

To know how the algorithm described in Section 3 works, we have employed the fol-

lowing algorithms:

1. The proposed algorithm has been coded in Visual Basic 4.0, using the simplex

method, included in the CPLEX Callable Library v4.0, to solve the linear re-

laxations.

2. The B&B procedure imbedded into the CPLEX Mixed Integer Solver 4.0. (To

avoid the CPLEX routine building a huge tree, because of memory space con-

straints, we have �xed at 500,000 the parameter determining the maximum

number of nodes solved before the B&B terminates. Given the high computa-

tional complexity of the problem at hand, the CPLEX routine stops, sometimes,

without reaching optimality. In such cases, we have discarded the instances

to evaluate the Cmax deviation, and computed the time employed solving the

500,000 nodes as if the B&B had solved the problem.)

We executed a series of computational experiments on an IBM compatible PC, by

considering three classes of test problems obtained by randomly generating the pi val-

ues according to a uniform distributions in the ranges [1; 100] ; [10; 100] and [50; 100].

For each class, and for di�erent values of n and m, the entries in the Table I give the

average number of iterations and CPU time required by each of the three algorithms,

computed over 10 problem instances.
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The objective function values, computed by the algorithm have been compared

with the values corresponding to the optimal solution (when this has been reached

by the B&B procedure). In all tested cases, the PA has reached the same objective

value than the B&B.

To evaluate the computational performance, we have compared the number of LP

relaxations solved by the PA with the number of nodes solved by the B&B, and the

CPU times, for the same instances. The computational performance of the PA was,

in general, satisfactory for all tested cases. It is important to notice that, while the

B&B was not capable of optimizing all tested problems, the PA always was able to

converge to an integer solution. Furthermore, the average computational e�ort of the

PA shows an important saving.

5 Concluding Remarks

In this paper we propose a new approximation algorithm based on cutting planes

techniques for a hard scheduling problem. We have followed the recent trend of the

CO literature, which consists in applying Polyhedral Theory in order to optimize

NP-hard combinatorial problems (which gave birth to the called Polyhedral Combi-

natorics Theory).

The results obtained show that this kind of approach is a quite powerful tool for

e�ectively producing good feasible solutions. They also give support to the hypoth-

esis stating that specially developed algorithms for speci�ed combinatorial problems,

work better than general methods like Branch and Bound or Dynamic Programming.
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