
Logic Cuts Generation in a Branch and Cut

Framework for Location Problems

Mar��a A. Osorio Lama Rosalba M�ujica Garc��a

School of Computer Science

Autonomous University of Puebla, Puebla 72560

M�exico

Abstract

In the warehouse location problem, the objective is to choose a set of warehouses of limited

capacity so as to serve a set of demand points while minimizing �xed and transport costs. In

particular, it includes a knapsack constraint that can be useful for generating simple logical

constraints named logic cuts. The logic cuts can be generated in linear time and can be

implemented in a branch and cut framework for accelerating the solution of the capacitated

warehouse location problems with �xed costs. We use the Hooker algorithm for generating

all contiguous t-cuts in every node of the tree and report the experimental results.

Keywords: Warehouse Location Problems, Knapsack Constraint, Logic Cuts.

1 Introduction

Capacitated warehouse location models arise in many practical applications. The
MILP formulation includes a model that use binary variables to denote the existence
of some of the total sources that accomplish the total demand and minimize the
total cost. In this case, the cost includes the �xed existence cost for every warehouse

and the continuous transportation cost for every combination between the warehouse
sources and the demand points.

Unfortunately, the solution of these models can be quite expensive with the
LP-based branch and bound methods that are implemented in many commercial
and academic computer codes (e.g. OSL, MPSX, SCICONIC, ZOOM, LINDO,
APEX, CPLEX, etc.) This has motivated in recent years substantial development of
reformulation techniques and cutting plane algorithms, as for instance in the work
by Sherali and Adams and Balas et al. [2]. However, these new developments have
concentrated on numerical aspects, mainly on convexi�cation with branch and bound.

155



156 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

Although these numerically based techniques are quite promising, an alternate
and complementary direction is to exploit the logical structure of an MILP problem
(see Jeroslow [23]). A problem may have logical constraints that restrict the number
of solutions that need to be enumerated, although these constraints may not be
explicit in the MILP model. Constrains of this kind, once thery are identi�ed, can be
used either as additional inequality constraints within the MILP model or as symbolic
constraints that restrict the generation of alternatives in a branch-and-bound search.

In particular, the capacitated warehouse location model includes knapsack con-
straint that can be very useful for generating simple logical constraint with certain
and very interesting properties. This logical constraints are named logical cuts and
can be implemented in a branch and cut framework and can be used to accelerate the
solution of the capacitated warehouse location problems with �xed costs.

2 The Capacitated Warehouse Location Problem

In the classical problem, the idea is to choose a set of warehouses of limited capacity
so as to serve a set of demand points while minimizing �xed and transport costs. Let

xij = Flow from warehouse i to demand point j.

fi = Warehouses Fixed Cost i.

ki = Warehouse Capacity i.

dj = Demand point j.

cij = Transportation Unit Cost from i to j.

The MILP model is

min
P

i kiyi +
P

ij cijxij

s.a.

P
j xij � kiyi 8i

P
i xij � dj 8j

xij � 0 8i; j

yi 2 0; 1 8i

The capacitated warehouse location problem is very useful to illustrate how cuts
can be generated from knapsack constraints.

c Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 157

3 Extended Clauses

The knapsack constraint is a extended clause. Extended clauses seem a particularly
useful compromise between arithmetic and logic because they express the notions of
\at least" and \at most" but can be e�ciently processed as logical formulas. In fact,
Barth's constraint-based solver for 0-1 optimization problems [3] reasons with 0-1
inequalities only after converting them to extended clauses.

An extended clause of degree k can be written

P
j2J Lj � k;

where each Lj is a literal. Here the sum is not an arithmetical sum but simply counts
the number of literals that are true. Ordinary clauses have degree 1. To say that
exactly k are true, one can write

P
j2J :Lj � jJ j � k;

and one can use two extended clauses to say exactly k are true.

A complete inference algorithm (\generalized resolution") for extended clauses
was presented in [11,14] and is re�ned by Barth in [2]. It uses resolution as well
as a diagonal summation, where the latter is de�ned as follows: An extended
clause

P
j2J Lj � k + 1 is the diagonal sum of the set of extended inequalities

f
P

j2J Lj � kji 2 Jg if J =
S

j2J Ji but for each i 2 J; i 62 Ji.

The algorithm of [11] is applied to a set S of extended clauses as follows. If
there are two clauses C1, C2 of degree 1 with a resolvent C that is implied by
no extended clause in S, such that C1 is implied by an extended clause in S and
similarly for C2, then add C to S. If there is a set E of extended clauses with a
diagonal sum D that is implied by no extended clause in S, such that each clause in
E is implied by some clause in S, then add D to S. The algorithm continues until

no more clauses can be added to S. This can be done thanks to the following theorem:

Theorem 1 (Hooker [11],[14]). A set S of extended clauses implies clause C if
and only if the generalized resolution algorithm applied to S generates a clause that
implies C.

Implementation of the algorithm requires recognition of when one extended clause
implies another. We say that

P
j2J1 L1j � k1 implies

P
j2J2 L2j � k2 if and only if

jJ1j � jfj 2 J1 \ J2jL1j = L2jgj � k1 � k2:

c Investigaci�on Operativa 1999



158 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

When all of the literals of a derived extended clause are positive and correspond
to sets of inequalities, a linear relaxation can be formulated. A unit resolution
algorithm for extended clauses appears in Fig. 1.

Linear programming is a stronger inference algorithm for extended clauses than
unit resolution. For example, LP detects the infeasibility of the following inequalities,
but unit resolution can do nothing with the corresponding extended clauses:

y1 + +y2 + y3 � 2
(1� y1) + (1� y2) + (1� y3) � 2

No known inference algorithm has exactly the same e�ect as LP on extended
clauses, unless one views LP algorithms as inference algorithms. Generalized
resolution is of course stronger than LP.

Fig. 1: A unit resolution algorithm for extended clauses.

4 Knapsack Constraints

A complete inference algorithm for knapsack constraints appears in [14], and an
analog of unit resolution can easily be devised for them. Nevertheless, the knapsack
constraints can be better used as a source of logic cuts that are easily processed,

c Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 159

such as clauses and extended clauses. The implied clauses, for example, are identical
to the well-known \covering inequalities" for the constraint, and their derivation is
straighforward (e.g. [8]).

It may be more e�ective, however, to infer extended inequalities. Although
it is hard to derive all the extended inequalities that are implied by a constraint,
it is easy to derive all contiguous cuts. Consider a 0-1 inequality dy � � for
which it is assumed, without loss of generality, that d1 � d2 � ::: � dn > 0; if
dj < 0, reverse its sign and add dj to �. A contiguous cut for dx � � is one of the form,

Pt+w+k�1

j=t yj � k;

where k is the degree of the cut and w < n the \weakness" (w = 0 indicates a cut
that �xes all of its variables). In particular (1) is a t-cut because the �rst term is yt.
(1) is valid if and only if

Pt+k�1

j=1 dj +
Pn

t+w+k dj < �;

Furthermore,

Theorem 2 (Hooker [18]) Every t-cut of weakness w for dx � � is implied by a
1-cut of weakness w.

The power of all t-cuts can therefore be obtained by generating only 1-cuts. The
algorithm of Fig. 2, presented in by Hooker in [18] does this in linear time. By way
of example, the knapsack constraint,

13y1+ 9y2 + 8y3 + 6y4 + 5y5 + 3y6 � 30

gives rise to the 1-cuts,

y1 + y2 � 1

y1 + y2 + y3 � 2

y1 + y2 + y3 + y4 + y5 � 3:

The �rst cut could be deleted if desired, because it is redundant of the second.

5 Logic Cuts

An intuitive understanding of a problem can suggest logic cuts, both valid and
nonvalid, even when no further polyhedral cuts are easily identi�ed. The idea of a
(possibly nonvalid) logic cut was de�ned in [21], which gives the process synthesis

c Investigaci�on Operativa 1999



160 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

Fig. 2: An algorithm for generating all t-cuts for a knapsack constraint dy � � in
which d1 � d2 � ::: � dn > 0;.

example as an example. Other examples include structural design problems [10],
matching problems [32], and a series of standard 0-1 problems discussed by Wilson
[73].

Whereas a cut in the traditional sense is an inequality, a logic cut can take the
form of any restriction on the possible values of the integer variables, whether or not
it is expressed as an inequality. Logic cuts can therefore be used to prune a search tree
even when they are not expressed as inequality constraints in an MILP mode. But
they can also be imposed as inequalities within an MILP model, in which case they
can tighten the linear relaxation and cut o� fractional solutions as traditional cuts do.

Taking the Hooker [21] de�nition of a logic cut, it will be a constraint on the
values of the integer variables that does not change the projection of the problem's
epigraph onto the space of continuous variables. Furthermore, a logic cut must
have this property for any set of objective function coe�cients, provided the integer
variables have nonnegative coe�cients. Logic cuts therefore cut o� integer points
that are dominated by others.

This de�nition is partially motivated by the work of Jeroslow [23], who viewed

integer variables as arti�cial variables used solely to de�ne the shape of the epigraph
in continuous space. From this perspective it is natural to admit cuts that leave the
problem in continuous space undistrubed even if they cut o� feasible solutions int he
original space.

A logic cut for a MILP model has therefore been characterized as an implication
of the constraint set. Actually any logical formula implied by the constraint set as a
whole is a logic cut, and a logic cut is true if satis�es the constraints even if is not
implied by the constraints[19]. Logic cuts can be de�ned in an even more general
sense that permits them to be nonvalid. A cut may be added to the problem without

c Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 161

changing the optimal solution, but it may exclude feasible solutions.

6 Example

We have 6 warehouses of limited capacity and 5 demand points, the warehouses
capacity is 13, 9, 8, 6, 5 y 3, and we have the following demand in every demand
point: 4, 5, 6, 7, y 8, according to the following Figure:

The MILP model to represent this problem is:

Minimize

250Y 1 + 180Y 2 + 170Y 3 + 160Y 4 + 140Y 5 + 120Y 6 +
50x11 + 55x12 + 60x13 + 65x14 + 70x15 +
55x21 + 50x22 + 55x23 + 60x24 + 65x25 +
60x31 + 55x32 + 50x33 + 55x34 + 60x35 +
65x41 + 60x42 + 55x43 + 50x44 + 55x45 +
70x51 + 65x52 + 60x53 + 55x54 + 50x55 +
75x61 + 70x62 + 65x63 + 60x64 + 55x65+

Subject to:

x11 + x12 + x13 + x14 + x15 � 13Y 1
x21 + x22 + x23 + x24 + x25 � 9Y 2
x31 + x32 + x33 + x34 + x35 � 8Y 3
x41 + x42 + x43 + x44 + x45 � 6Y 4
x51 + x52 + x53 + x54 + x55 � 5Y 5
x61 + x62 + x63 + x64 + x65 � 3Y 6

x11 + x12 + x31 + x41 + x51 � 4

c Investigaci�on Operativa 1999



162 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

x12 + x22 + x32 + x42 + x52 � 5
x13 + x23 + x33 + x43 + x53 � 6
x14 + x24 + x34 + x44 + x54 � 7
x15 + x25 + x35 + x45 + x55 � 8

13Y 1 + 9Y 2 + 8Y 3 + 6Y 4 + 5Y 5 + 3Y 6 � 30 (Knapsack Constraint)

xij � 0 Yi = 0; 1

Using the classical Branch and Bound method, we obtain the following tree:

Fig. 3: Branch and Bound Tree for the example.

As we can see, we need 13 nodes to obtain the optimal solution. If we use the
logic cuts generation in every node, we obtain the following branch and bound tree:

We can see that we only need 7 nodes to obtain the optimal solution. Notice that
the knapsack constraint will be di�erent in every node and that we need to generate

the logic cuts from the current knapsack constraint at that node.

7 Experimental Results and Conclusions

The following table shows the CPU seconds and the nodes number for the classical
branch and bound method and for the branch and logic cut framework. We show
the results for the examples tested. The numerical tests were performed on a SUN
Sparc Station with C programs that uses CPLEX Optimization Libraries.

c Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 163

Fig. 4: Branch and Logic Cut Tree for the example.

The �xed costs were generated using a normal distribution with a mean of
200 and a standard deviation of 20; the variable costs, according to the function:
50+5�ji�jj, where i and j are the warehouse and demand point indexes, respectively.
The right hand sides for the capacity warehouse constraints were obtained with a
normal distribution, using the number of warehouses as a mean and the half of
this value as a standard deviation. For the demand amounts, we used numbers
sequentially generated in order to accommodate the ratio tested of total warehouse
capacity to total demand.

The warehouse location problem is a very good example for the generation of logic

cuts from a knapsack constraint. The contiguous cuts used in the MILP model result
in a 40%-60% reduction in the number of nodes and almost the same reduction in
time. The results tend to con�rm that the best way to solve the warehouse location
problems is by adding contiguous cuts to the traditional MILP model.

Another important result, shown in the problems solved, is that contiguous cuts
have greater have greater e�ect when the problem is more tightly constrained, as
roughly indicated by the ratio of total warehouse capacity to total demand.

Because the logic cuts represent deeper cuts than the knapsack constraint in
Mixed Integer Linear problems, to insert logic cuts in every node of the searching

c Investigaci�on Operativa 1999



164 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

tree allows us to obtain a basic feasible solution earlier in the tree. It is important
to remark the fact that we need to obtain a new release, according to the integer
variables �xed at that node of the tree, for the knapsack constraint, before generating
the logic cuts for that node. Those cuts will remain in the model only for that
speci�c node and its descendants, and we must remove them for backtracking the tree.

Because the time in a branch and bound tree is mainly spent in the solution of
every linear model at each node of the tree, to decrease considerably the number of
nodes, will have the same e�ect in the problem resolution time, as we can see in the
problems solved. In a smaller searching tree the time spent in �nding the optimal
solution will be, of course, smaller. On the other hand, the time spent in generating
logic cuts is very low because Hooker's algorithm can do it in linear time. Even if
the addition of those new constraints to each node enlarges the linear problem to
be solved, the increment is very low and we have the advantage that the logic cuts
generated will remain in the model only for this speci�c node and its descendant.

References

[1] Balas, E., Disjunctive programming: Cutting planes from logical conditions, in
O.L. Mangasarian, R. R. Meyer and S. M. Robinson, eds., Nonlinear Programming
2, Academic Press (New York, 1975) 279-312.

[2] Balas, E., Disjunctive programming, Annals Discrete Mathematics 5 (1979)
3-51.

[3] Barth, P., Logic-Based 0-1 Constraint Programming, Kluwer Academic Publishers
(Boston, 1995).

[4] Beaumont, N., An algorithm for disjunctive programs, European Journal of

c Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 165

Operational Research 48 (1990) 362-371.

[5] Beasley, J. E., An algorithm for solving large capacitated warehouse loca-
tion problems, European Journal of Operational Research 3 (1988) 314-325.

[6] Bollapragada, S., O. Ghattas and J. N. Hooker, Optimal Design of truss
structures by mixed logical and linear programming, manuscript, Graduate School of
Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(1995).

[7] Chandru, V., and J. N. Hooker, Extended Horn sets in propositional logic,
Journal of the ACM 38 205-221.

[8] Granot, F., and P. L. Hammer, On the use of boolean functions in 0-1 lin-
ear programming, Methods of Operations Research (1971) 154-184.

[9] Hammer, P.L., and S. Rudeanu, Boolean Methods in Operations Research
and Related Areas, Springer Verlag (Berlin, New York, 1968).

[10] Hooker, J. N., Resolution vs. Cutting plane solution of inference prob-
lems: Some computational experience, Operations Research Letters 7 (1988) 1-7.

[11] Hooker, J. N., Generalized resolution and cutting planes, Annals of Oper-
ations Research 12 (1988) 217-239.

[12] Hooker, J. N., A quantitative approach to logical inference, Decision Sup-
port Systems 4 (1988) 45-69.

[13] Hooker, J. N., Input proofs and rank one cutting planes, ORSA Journal
on Computing 1 (1989) 137-145.

[14] Hooker, J. N., Generalized resolution for 0-1 linear inequalities, Annals of
Mathematics and AI 6 (1992) 271-286.

[15] Hooker, J. N., Logical inference and polyhedral projection, Proceedings,
Computer Science Logic Workshop (CSL'91), Lecture Notes in Computer Science
626 (1992) 184-200.

[16] Hooker, J.N., Logic-based methods for optimization, in A. Borning, ed.,
Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science 874 (1994) 336-349.

[17] Hooker, J. N., Testing heuristics: We have it all wrong, Journal of Heuristics 1
(1995) 33-42.

[18] Hooker, J.N., and N.R. Natraj, Solving 0-1 optimization problems with k-

c Investigaci�on Operativa 1999



166 Lama, M. O. and Garc��a, R. M. � Logic Cuts Generation in a Branch ...

tree relaxation, in preparation.

[19] Hooker, J.N., and M.A. Osorio, Mixed Logical/Linear Programming. EDRC
Report No. 02-08-1996. Carnegie Mellon University. To appear in Discrete Applied
Mathematics.

[20] Hooker, J.N., and G. Rago, Partial instantiation methods for logic program-
ming, Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (1995).

[21] Hooker, J.N., H. Yan, I. Grossmann, and R. Raman, Logic cuts for pro-
cessing networks with �xed charges, Computers and Operations Research 21 (1994)
265-279.

[22] Jeroslow, R. E., Representability in mixed integer programming, I: Char-
acterization results, Discrete Applied Mathematics 17 (1987) 223-243.

[23] Jeroslow, R. E., and J. K. Lowe, Modeling with integer variables, Mathe-
matical Programming Studies 22 (1984) 167-184.

[24] Raman, R., and I. E. Grossmann, Modeling and computational techniques
for logic based integer programming, Computer and Chemical Engineering 18 (1994)
563-578.

[25] Williams, H.P., Logical problems and integer programming, Bulletin of
the Institute of Mathematics and its Implications 13 (1977) 18-20.

[26] Williams, H.P., Linear and integer programming applied to the proposi-
tional calculus, International Journal of Systems Research and Information Science
2 (1987) 81-100.

[27] Williams, H.P., An alternative explanation of disjunctive formulations,
European Journal of Operational Research 72 (1994) 200-203.

[28] Williams, H.P., Logic applied to integer programming and integer pro-
gramming applied to logic, European Journal of Operational Research 81 (1995)
605-616.

[29] Wilson, J. M., Generating cuts in integer programming with families of
specially ordered sets, European Journal of Operational Research 46 (1990) 101-108.

c Investigaci�on Operativa 1999


